
Administrator’s Guide
Informix Red Brick Decision Server
Version 6.0
November 1999
Part No. 000-6367

ii Informix Red Brick De
Published by Informix Press Informix Corporation
4100 Bohannon Drive
Menlo Park, CA 94025-1032

© 1999 Informix Corporation. All rights reserved. The following are trademarks of Informix Corporation
or its affiliates, one or more of which may be registered in the United States or other jurisdictions:

Answers OnLineTM; C-ISAM ; Client SDKTM; DataBlade ; Data DirectorTM; Decision FrontierTM;
Dynamic Scalable ArchitectureTM; Dynamic ServerTM; Dynamic ServerTM, Developer EditionTM;
Dynamic ServerTM with Advanced Decision Support OptionTM; Dynamic ServerTM with Extended
Parallel OptionTM; Dynamic ServerTM with MetaCube ; Dynamic ServerTM with Universal Data OptionTM;
Dynamic ServerTM with Web Integration OptionTM; Dynamic ServerTM, Workgroup EditionTM;
Dynamic Virtual MachineTM; Enterprise Decision ServerTM; FormationTM; Formation ArchitectTM;
Formation Flow EngineTM; Gold Mine Data Access ; IIF.2000TM; i.ReachTM; i.SellTM; Illustra ; Informix ;
Informix 4GL; Informix InquireSM; Informix Internet Foundation.2000TM; InformixLink ;
Informix Red Brick Decision ServerTM; Informix Session ProxyTM; Informix VistaTM; InfoShelfTM;
InterforumTM; I-SpyTM; MediazationTM; MetaCube ; NewEraTM; ON-BarTM; OnLine Dynamic ServerTM;
OnLine/Secure Dynamic ServerTM; OpenCase ; OrcaTM; PaVERTM; Red Brick and Design;
Red Brick Data MineTM; Red Brick Mine BuilderTM; Red Brick DecisionscapeTM; Red Brick ReadyTM;
Red Brick Systems ; Regency Support ; Rely on Red BrickSM; RISQL ; Solution DesignSM; STARindexTM;
STARjoinTM; SuperView ; TARGETindexTM; TARGETjoinTM; The Data Warehouse Company ;
The one with the smartest data wins.TM; The world is being digitized. We’re indexing it.SM;
Universal Data Warehouse BlueprintTM; Universal Database ComponentsTM; Universal Web ConnectTM;
ViewPoint ; VisionaryTM; Web Integration SuiteTM. The Informix logo is registered with the United States
Patent and Trademark Office. The DataBlade logo is registered with the United States Patent and
Trademark Office.

Documentation Team: Diana Chase, Barbara Nomiyama, Virginia Panlasigui, Keldyn West

GOVERNMENT LICENSE RIGHTS

Software and documentation acquired by or for the US Government are provided with rights as follows:
(1) if for civilian agency use, with rights as restricted by vendor’s standard license, as prescribed in FAR 12.212;
(2) if for Dept. of Defense use, with rights as restricted by vendor’s standard license, unless superseded by a
negotiated vendor license, as prescribed in DFARS 227.7202. Any whole or partial reproduction of software or
documentation marked with this legend must reproduce this legend.
cision Server Administrator’s Guide

Table of Contents

Table of
Contents
Introduction
In This Introduction 3
About This Guide 3

Types of Users 3
Software Dependencies 4

New Features . 5
Documentation Conventions 5

Syntax Notation 6
Syntax Diagrams 7
Keywords and Punctuation 9
Identifiers and Names 9
Icon Conventions 10

Customer Support 12
New Cases 12
Existing Cases 13
Troubleshooting Tips 13

Related Documentation 14
Additional Documentation 16

Online Manuals 16
Printed Manuals 17

Informix Welcomes Your Comments 17

Chapter 1 Overview of Red Brick Decision Server
In This Chapter 1-3
Database Server Technology 1-4
Database Server Components 1-5

Red Brick Decision Server 1-7
Table Management Utility 1-7
RISQL Entry Tool and RISQL Reporter 1-8
Administrator Tool 1-8

iv Inform
Client Connector Pack 1-8
Informix Vista 1-9
SQL-BackTrack 1-9

Database Server 1-9
Interprocess Communication 1-10
Warehouse API Process 1-12
Server Processes 1-12
Administration Daemon Process 1-12
Log Daemon Process 1-13
Process Checker Daemon 1-13
Vacuum Cleaner Daemon 1-13
Listener Thread 1-14
CTRL-C Coordination Thread 1-14
Shared Memory 1-14

Database Administration Overview 1-15
Installing Red Brick Decision Server 1-15
Planning the Database Design 1-16
Implementing the Database 1-16
Providing User Access 1-17
Loading and Unloading Data 1-18
Maintaining the Database and Tuning for Performance . . . 1-20
Planning Backup and Restore Procedures 1-20

Aroma Sample Database 1-21
Database Limits 1-21

Chapter 2 Key Concepts
In This Chapter 2-3
Data Loading 2-4
Parallel Processing 2-5
Physical Implementation of Databases 2-5

Indexes and Retrieval Strategies 2-6
Segmented Storage 2-7
Precomputed Views for Increased Query Performance 2-13

Database Directories and Files 2-14
Logical Database Names 2-15
Segment Names 2-20

Configuration and Initialization 2-20
Configuration File 2-20
Initialization Files 2-21
SET Commands 2-23
ix Red Brick Decision Server Administrator’s Guide

Environment Variables 2-24
Administrator Tool 2-24

Server Locale . 2-26
Components of a Locale 2-26
Defining the Server Locale 2-30
Overriding the Server Locale 2-31
Ensuring Client/Server Compatibility 2-34

File Ownership and Permissions 2-36
Database Authorizations and Privileges 2-36
Versioned Databases 2-38
Referential Integrity 2-39

Load and Insert Operations 2-39
Delete Operations and Cascaded Deletes 2-40

Chapter 3 Schema Design
In This Chapter 3-3
Transaction Processing Versus Decision Support 3-3

Transaction-Processing Databases 3-4
Decision-Support Databases 3-5

Star Schemas . 3-6
Performance of Star Schemas 3-8
Terminology 3-8
Simple Star Schemas 3-8
Multi-Star Schemas 3-14
Views . 3-17

Considerations for Schema Design 3-18
Schema Building Blocks 3-20
Example: Salad Dressing Database 3-23

Analyzing Your Schema 3-24
Browsing the Dimension Tables 3-24
Querying the Fact Table 3-25
Determining Which Attributes to Include 3-25

Schema Examples 3-27
Reservation System Database 3-27
Investment Database 3-29
Health Insurance Database 3-31

Chapter 4 Planning a Database Implementation
In This Chapter 4-3
Organizing Data into Databases 4-3
Table of Contents v

vi Inform
Determining When to Create Additional Indexes 4-4
STAR Indexes 4-6
B-TREE Indexes 4-9
TARGET Indexes 4-10
No Indexes 4-12

Planning for TARGETjoin Processing 4-13
STARjoin Versus TARGETjoin 4-13
Administration Considerations for TARGETjoin Processing . . 4-14
TARGET Index DOMAIN Clause 4-19

Planning Disk Storage Organization 4-20
Estimating the Size of User Tables 4-21
Estimating the Size of Indexes 4-23
Example: Calculating Table, Index, and System Table Sizes . . 4-27
Estimating the Size of System Tables 4-33
Total Space for User Tables, Indexes, and System Tables . . . 4-34

Estimating Temporary Space Requirements 4-35
How Optimized Index-Building Operations Use Temporary Space 4-36
Estimating Temporary Space Values for Index-Building Operations4-37
Temporary Space Requirements for TARGET Indexes 4-42
How Query Operations Use Temporary Space 4-43
Estimating a QUERY_MEMORY_LIMIT Value for Queries . . 4-43
Estimating a MAXSPILLSIZE Value for Queries 4-44

Planning for Segmented Storage 4-45
Determining When to Use Default and Named Segments . . . 4-46

Considerations for Growing Tables 4-48
Effect of Table Growth on STAR Indexes. 4-48

Chapter 5 Creating a Database
In This Chapter 5-3
Overview . 5-3
Creating the Database Structure 5-4

Initializing the Database 5-5
Defining a Logical Database Name 5-7
Changing the DBA Account Password 5-8

Creating the Database Objects 5-10
Creating Segments 5-11
Creating Tables 5-12

Setting the MAXSEGMENTS and MAXROWS PER SEGMENT
Parameters. 5-12

Naming Constraints for Primary and Foreign Keys 5-13
ix Red Brick Decision Server Administrator’s Guide

Maintaining Referential Integrity with ON DELETE 5-14
Creating Indexes 5-15

INDEX TEMPSPACE Parameters. 5-15
Parallel Indexes 5-16
Loading Tables with Indexes 5-17
STAR Indexes 5-17
TARGET Indexes 5-18

Creating Views 5-18
Creating and Managing Macros 5-20

Guidelines for Macro Definitions. 5-20
Availability and Scope 5-21

Chapter 6 Working with a Versioned Database
In This Chapter 6-3
Determining Whether You Need Versioning 6-4

Load Window 6-4
Increased Recoverability. 6-4
Load with Periodic Commit 6-5
Dimension Table Cleaning 6-6
Costs of the Version Log 6-6

Loading Data into Versioned Databases 6-7
Understanding the Version Log 6-9

Structure of the Version Log 6-10
Versioned DELETE Operations 6-11

Understanding Frozen Versions 6-12
Controlling Versioning 6-14

Creating the Version Log 6-16
Dropping the Version Log and Adding Space 6-17
Controlling Frozen Versions 6-18

Maintaining a Versioned Database 6-19
Monitoring the Version Log 6-19
Backup and Recovery 6-20

Controlling the Vacuum Cleaner 6-21
Example: Creating a Versioned Aroma Database 6-23

Chapter 7 Providing Database Access and Security
In This Chapter 7-3
Adding Database Users 7-4

Creating Operating-System Accounts for Users. 7-4
Granting Database Access 7-5
Table of Contents vii

viii Infor
Changing Passwords 7-7
Granting Access with System Roles 7-7

DBA, RESOURCE, and CONNECT Capabilities 7-8
Granting and Revoking the DBA and RESOURCE System Roles 7-9

Granting Database Object Privileges 7-9
Granting Access with Role-Based Security 7-11

Task Authorizations 7-12
Role Capabilities 7-14
Creating Roles. 7-15
Granting Task Authorizations 7-16
Granting Object Privileges to Roles 7-17
Granting Roles 7-18
Revoking Task Authorizations, Object Privileges, and Roles . . 7-22
Tracking Role Authorizations and Members 7-24

Administering Password Security 7-27
Enforcing Password Changes 7-28
Warning Users of Password Expiration 7-30
Limiting Reuse of Previous Passwords 7-31
Limiting Frequency of Password Changes 7-32
Enforcing Password Complexity and Length 7-33
Locking User Accounts After Failed Connection Attempts . . 7-36
Specifying the Lock-Out Period 7-37

Chapter 8 Managing Database Activity in an Enterprise
In This Chapter 8-5
Task Authorizations for Managing Database Activity 8-6
Administration Database 8-6
Monitoring Database Activity with Dynamic Statistic Tables . . . 8-8

Read and Write Statistics 8-9
Controlling Database Activity 8-12

Bringing a Database to a Quiescent State 8-12
Activating a Database 8-13
Resetting Accumulated Statistics 8-13
Canceling a User Command 8-13
Closing a User Session 8-14
Changing User Priorities for the Current Session 8-14

Administration Daemon Process 8-15
Statistics Collection Interval 8-16
DST Refresh Interval 8-17

Event Logging 8-18
mix Red Brick Decision Server Administrator’s Guide

Logging Subsystem 8-18
Event Log Messages 8-24
Log Files . 8-27
Configuring the Logging Subsystem 8-28
Query Logging 8-32

Controlling Advisor Logging 8-32
Advisor Log Files 8-32
What the Advisor Logs 8-33
Starting and Stopping the Advisor Log 8-34
ADMIN ADVISOR_LOG_DIRECTORY 8-37
ADMIN ADVISOR_LOG_MAXSIZE 8-38
SET UNIFORM PROBABILITY FOR ADVISOR. 8-39

Accounting . 8-39
Accounting Process 8-40
Format of Accounting Records 8-41
Accounting Files 8-41
Configuring Accounting. 8-43
Controlling Accounting 8-45

Chapter 9 Maintaining a Data Warehouse
In This Chapter 9-5
Locking Tables and Databases 9-6

Manual Table or Database Locks 9-6
Types of Table Locks 9-7
Locking and Segments 9-8
Determining When to Lock a Table or Database 9-9
Specifying Wait Behavior for Server and TMU Locks 9-10
Setting Isolation Level for Versioned Transactions 9-11

Obtaining Information on Tables and Indexes 9-13
Monitoring Growth of Tables and Indexes 9-13

STAR Indexes 9-14
MAXSIZE Column 9-15
USED Column 9-16
TOTALFREE Column. 9-16
Pseudocolumns. 9-16

Adding Space to a Segment 9-18
Altering Segments 9-21

ALTER SEGMENT Operations 9-21
Ensuring No Users Are Active 9-22
Attaching and Detaching Segments 9-23
Table of Contents ix

x Inform
Moving Entire Segments 9-24
Specifying a Segmenting Column 9-24
Specifying a Range 9-24
Taking a Segment Offline or Online 9-24
Clearing a Segment 9-25
Renaming a Segment 9-25
Changing PSU Sizes. 9-25
Changing PSU Location 9-26
Verifying a Segment 9-26
Forcing a Segment into an Intact State 9-27

Recovering a Damaged Segment 9-27
Managing Optical Storage 9-29

Assigning Optical Storage. 9-30
Specifying Access Behavior for Optical Segments 9-31
Specifying Index Selection with Optical Segments 9-32

Altering Tables 9-33
Adding and Dropping Columns 9-34
Changing a Column Name 9-34
Changing the Default Value for a Column 9-34
Changing the MAXSEGMENTS and MAXROWS PER SEGMENTS

Values 9-35
Changing the Way Referential Integrity Is Maintained 9-35
Changing the Data Type for a Column 9-36
Adding and Dropping Foreign Keys 9-37
Changing the Fill Factor for a VARCHAR Column 9-38
Recovering from an Interrupted ALTER TABLE Operation . . 9-38

Copying or Moving a Database 9-40
Full Versus Relative Pathnames 9-40
Copying a Database That Contains Only Relative Pathnames . 9-42
Copying a Database That Contains Full Pathnames 9-42
Moving a Database That Contains Only Relative Pathnames. . 9-43
Moving a Database That Contains Full Pathnames 9-44

Modifying the Configuration File 9-45
Monitoring and Controlling a Database Server 9-49

Monitoring and Controlling a Server on UNIX 9-49
Monitoring and Controlling a Server on Windows NT 9-52

Enabling Licensed Options 9-53
ix Red Brick Decision Server Administrator’s Guide

Determining Version Information 9-54
Deleting Database Objects and Databases 9-54

Dropping Database Objects. 9-55
Deleting a Database 9-58

Chapter 10 Tuning a Warehouse for Performance
In This Chapter 10-5
Specifying Parameters with rbw.config File Entries or SET Commands 10-6
Setting Temporary Space Parameters 10-7

Temporary Space Parameters 10-7
How Temporary Space Is Allocated 10-9
TEMPSPACE 10-12
Determining Current Values 10-17
Removing Temporary Files 10-17
Setting QUERY_MEMORY_LIMIT 10-18

Setting the Result Buffer for Long-Running Queries 10-19
RESULT BUFFER Parameter 10-20
RESULT BUFFER FULL ACTION Parameter 10-21

Setting Segment and Partial Availability Behavior 10-22
Location of Default Segments 10-22
Segment Drop Behavior 10-23
Query Behavior on Partially Available Tables 10-25
Use of Partially Available Indexes 10-27

Setting the VARCHAR Column Fill Factor 10-28
How the Server Uses the VARCHAR Fill Factor 10-28
Effect of Fill Factor on Performance 10-29
Monitoring Accuracy of the VARCHAR Fill Factor 10-34
Modifying the VARCHAR Fill Factor 10-36

Setting the Index Fill Factor 10-37
Finding the Fill Factor Used for a Specific Index 10-40
Deciding Whether to Change Default Fill Factors 10-40
Changing an Index Fill Factor 10-41

Creating Additional Indexes 10-42
Understanding Query Processing 10-43

Join Algorithms. 10-43
Operator Model 10-46
EXPLAIN Statement 10-55

TARGETjoin Query Processing 10-59
How to Use TARGETjoin Processing 10-59
When to Use TARGETjoin Processing 10-62
Table of Contents xi

xii Inform
Examples 10-64
Reading EXPLAIN Output for a TARGETjoin Query 10-67
Summary and Recommendations 10-72

Using Synonyms to Control Fact-to-Fact Joins 10-75
Making SQL-Based Improvements 10-78

UNION Versus Interdimensional ORs 10-78
Subquery in the FROM Clause Versus Correlated Subquery . . 10-78

Chapter 11 Tuning a Warehouse for Parallel Query Processing
In This Chapter 11-3
Parallel Query Tuning Parameters 11-4
Enabling Parallel Query Processing 11-5
Limiting I/O Contention with the FILE_GROUP Parameter . . . 11-6
Allowing Parallelism Within Disk Groups with the GROUP Parameter 11-8
Limiting Available Tasks 11-10

TOTALQUERYPROCS 11-10
QUERYPROCS 11-11

Setting Minimum Row Requirements with ROWS_PER_TASK Parameters
11-13

ROWS_PER_SCAN_TASK 11-14
ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK . . 11-17

Forcing the Number of Parallel Tasks with the FORCE_TASKS Parameters
11-25

FORCE_SCAN_TASKS. 11-28
FORCE_FETCH_TASKS and FORCE_JOIN_TASKS 11-29
FORCE_HASHJOIN_TASKS 11-32

Enabling Partitioned Parallelism for Aggregation 11-33
System Considerations for Parallel Tasks 11-35
Analysis of System Resources and Workload 11-36

Disk Usage 11-37
Memory Usage 11-38
CPU Allocation 11-39

Tuning for Specific Query Types 11-41
Parallel STARjoin Queries. 11-41
Parallel Table Scans 11-44
SuperScan Technology 11-44
About Reasonable Values 11-45

Basic Guidelines 11-45
ix Red Brick Decision Server Administrator’s Guide

Appendix A Example: Building a Database

Appendix B Configuration File

Appendix C System Tables and Dynamic Statistic Tables

Appendix D Example: Using Segments with Time-Cyclic Data

Index
Table of Contents xiii

xiv Infor
mix Red Brick Decision Server Administrator’s Guide

Introduction
Introduction
In This Introduction 3

About This Guide 3
Types of Users 3
Software Dependencies 4

New Features . 5

Documentation Conventions 5
Syntax Notation 6
Syntax Diagrams 7
Keywords and Punctuation 9
Identifiers and Names 9
Icon Conventions 10

Comment Icons 10
Platform Icons 11

Customer Support 12
New Cases . 12
Existing Cases 13
Troubleshooting Tips 13

Related Documentation 14

Additional Documentation 16
Online Manuals 16
Printed Manuals 17

Informix Welcomes Your Comments 17

2 Inform
ix Red Brick Decision Server Administrator’s Guide

In This Introduction
This Introduction provides an overview of the information in this document
and describes the conventions it uses.

About This Guide
This guide contains important information on administering Informix Red
Brick Decision Server and provides information about how to install,
configure, and use the database server. It describes features, database server
concepts, and procedures for performing database server management and
performance tuning tasks.

Types of Users
This guide is written for the following users:

■ Database administrators

■ Database server administrators

■ Database architects

■ Database designers

■ Database developers

■ Backup operators

■ Performance engineers
Introduction 3

Software Dependencies
This guide assumes that you have the following background:

■ A working knowledge of your computer, your operating system,
and the utilities that your operating system provides

■ Some experience working with relational databases or exposure to
database concepts

■ Some experience with database server administration, operating-
system administration, or network administration

Software Dependencies
This guide assumes that you are using Informix Red Brick Decision Server,
Version 6.0, as your database server.

Red Brick Decision Server includes the Aroma database, which contains sales
data about a fictitious coffee and tea company. The database tracks daily
retail sales in stores owned by the Aroma Coffee and Tea Company. The
dimensional model for this database consists of a fact table and its
dimensions.

For information about how to create and populate the demonstration
database, see Appendix A, “Example: Building a Database.” For a
description of the database and its contents, see the SQL Self-Study Guide.

The scripts that you use to install the demonstration database reside in the
redbrick_dir/sample_input on UNIX or redbrick_dir\SAMPLE_INPUT on
Windows NT, where redbrick_dir is the Red Brick Decision Server directory on
your system.
4 Informix Red Brick Decision Server Administrator’s Guide

New Features
New Features
The following section describes new database server features relevant to this
document. For a comprehensive list of new features, see the release notes.

■ Informix Red Brick JDBC Driver, which allows Java programs to
access database management systems

■ Support for the VARCHAR (variable-length character) data type

■ Ability to export the results of an arbitrary query to a data file

■ Performance enhancements to referential integrity checking

■ Parallel versioned load

■ Ability to freeze a versioned database at one revision for user queries
but allow update activities to continue generating new revisions

■ Versioned invalidation of views in Vista

■ Connectivity enhancements

Documentation Conventions
Informix Red Brick documentation uses the following notation and syntax
conventions:

■ Computer input and output, including commands, code, and
examples, appear in Courier.

■ Information that you enter or that is being emphasized in an example
appears in Courier bold to help you distinguish it from other text.

■ Filenames, system-level commands, and variables appear in italic or
Courier italic, depending on the context.

■ Document titles always appear in Palatino italic.

■ Names of database tables and columns are capitalized (Sales table,
Dollars column). Names of system tables and columns are in all
uppercase (RBW_INDEXES table, TNAME column).
Introduction 5

Syntax Notation
Syntax Notation
This guide uses the following conventions to describe the syntax of
operating-system commands.

Command Element Example Convention

Values and
parameters

table_name Items that you replace with an appropriate
name, value, or expression are in italic type
style.

Optional items [] Optional items are enclosed by square
brackets. Do not type the brackets.

Choices ONE |TWO Choices are separated by vertical lines; choose
one if desired.

Required choices {ONE|TWO} Required choices are enclosed in braces;
choose one. Do not type the braces.

Default values ONE|TWO Default values are underlined, except in
graphics where they are in bold type style.

Repeating items name, … Items that can be repeated are followed by a
comma and an ellipsis. Separate the items
with commas.

Language
elements

() , ; . Parentheses, commas, semicolons, and
periods are language elements. Use them
exactly as shown.
6 Informix Red Brick Decision Server Administrator’s Guide

Syntax Diagrams
Syntax Diagrams
This guide uses diagrams built with the following components to describe
the syntax for statements and all commands other than system-level
commands.

Component Meaning

Statement begins.

Statement syntax continues on next line. Syntax
elements other than complete statements end with
this symbol.

Statement continues from previous line. Syntax
elements other than complete statements begin
with this symbol.

Statement ends.

Required item in statement.

Optional item.

Required item with choice. One and only one item
must be present.

Optional item with choice. If a default value exists,
it is printed in bold.

Optional items. Several items are allowed; a
comma must precede each repetition.

SELECT

DISTINCT

DBA TO

SELECT ON
CONNECT TO

ASC

DESC

,

ASC

DESC
Introduction 7

Syntax Diagrams
The preceding syntax elements are combined to form a diagram as follows.

Complex syntax diagrams such as the one for the following statement are
repeated as point-of-reference aids for the detailed diagrams of their compo-
nents. Point-of-reference diagrams are indicated by their shadowed corners,
gray lines, and reduced size.

The point-of-reference diagram is then followed by an expanded diagram of
the shaded portion—in this case, the INPUT_CLAUSE.

REORG table_name

INDEX

,

()index_name

RECALCULATE RANGES OPTIMIZE ON

;

OFF

segment_clause

LOAD

DATA

INPUT_CLAUSE

DISCARD_CLAUSE

TABLE_CLAUSE ;
criteria_clauseoptimize_clause comment_clause

FORMAT_CLAUSE

)(’FILENAME ’

INPUTFILE

INDDN

START RECORD START_ROWSTART_ROW STOP RECORD STOP_ROW

TAPE DEVICE ’DEVICE_NAME ’

FILENAME
8 Informix Red Brick Decision Server Administrator’s Guide

Keywords and Punctuation
Keywords and Punctuation
Keywords are words reserved for statements and all commands except
system-level commands. When a keyword appears in a syntax diagram, it is
shown in uppercase characters. You can write a keyword in uppercase or
lowercase characters, but you must spell the keyword exactly as it appears in
the syntax diagram.

Any punctuation that occurs in a syntax diagram must also be included in
your statements and commands exactly as shown in the diagram.

Identifiers and Names
Variables serve as placeholders for identifiers and names in the syntax
diagrams and examples. You can replace a variable with an arbitrary name,
identifier, or literal, depending on the context. Variables are also used to
represent complex syntax elements that are expanded in additional syntax
diagrams. When a variable appears in a syntax diagram, an example, or text,
it is shown in lowercase italic.

The following syntax diagram uses variables to illustrate the general form of
a simple SELECT statement.

When you write a SELECT statement of this form, you replace the variables
column_name and table_name with the name of a specific column and table.

SELECT column_name FROM table_name
Introduction 9

Icon Conventions
Icon Conventions
Throughout the documentation, you will find text that is identified by several
different types of icons. This section describes these icons.

Comment Icons

Comment icons identify three types of information, as the following table
describes. This information always appears in italics.

Icon Label Description

Warning: Identifies paragraphs that contain vital instructions,
cautions, or critical information

Important: Identifies paragraphs that contain significant
information about the feature or operation that is
being described

Tip: Identifies paragraphs that offer additional details or
shortcuts for the functionality that is being described
10 Informix Red Brick Decision Server Administrator’s Guide

Icon Conventions
Platform Icons

Feature, product, and platform icons identify paragraphs that contain
platform-specific information.

These icons can apply to an entire section or to one or more paragraphs
within a section. If an icon appears next to a section heading, the information
that applies to the indicated feature, product, or platform ends at the next
heading at the same or higher level. A ♦ symbol indicates the end of feature-,
product-, or platform-specific information that appears within one or more
paragraphs within a section.

Icon Description

Identifies information that is specific to UNIX platforms

Identifies information that is specific to Windows NT,
Windows 95, and Windows 98 environments

Identifies information that is specific to the Windows NT
environment

UNIX

Windows

WIN NT
Introduction 11

Customer Support
Customer Support
Please review the following information before contacting Informix
Customer Support.

If you have technical questions about Red Brick Decision Server but cannot
find the answer in the appropriate document, contact Informix Customer
Support as follows:

For nontechnical questions about Red Brick Decision Server, contact
Informix Customer Support as follows:

New Cases
To log a new case, you must provide the following information:

■ Red Brick Decision Server version (Refer to “Determining Version
Information” on page 9-54.)

■ Platform and operating-system version

■ Error messages returned by Red Brick Decision Server or the
operating system

■ Concise description of the problem, including any commands or
operations performed before you received the error message

■ List of Red Brick Decision Server or operating-system configuration
changes made before you received the error message

Telephone 1-800-274-8184 or 1-913-492-2086
(7 A.M. to 7 P.M. CST, Monday through Friday)

Internet access http://www.informix.com/techinfo

Telephone 1-800-274-8184
(7 A.M. to 7 P.M. CST, Monday through Friday)

Internet access http://www.informix.com/services
12 Informix Red Brick Decision Server Administrator’s Guide

Existing Cases
For problems concerning client-server connectivity, you must provide the
following additional information:

■ Name and version of the client tool that you are using

■ Version of Informix Red Brick ODBC Driver or Informix Red Brick
JDBC Driver that you are using, if applicable

■ Name and version of client network or TCP/IP stack in use

■ Error messages returned by the client application

■ Server and client locale specifications

Existing Cases
The support engineer who logs your case or first contacts you will always
give you a case number. This number is used to keep track of all the activities
performed during the resolution of each problem. To inquire about the status
of an existing case, you must provide your case number.

Troubleshooting Tips
You can often reduce the time it takes to close your case by providing the
smallest possible reproducible example of your problem. The more you can
isolate the cause of the problem, the more quickly the support engineer can
help you resolve it:

■ For SQL query problems, try to remove columns or functions or to
restate WHERE, ORDER BY, or GROUP BY clauses until you can isolate
the part of the statement causing the problem.

■ For Table Management Utility load problems, verify the data type
mapping between the source file and the target table to ensure
compatibility. Try to load a small test set of data to determine
whether the problem concerns volume or data format.

■ For connectivity problems, issue the ping command from the client to
the host to verify that the network is up and running. If possible, try
another client tool to see if the same problem arises.
Introduction 13

Related Documentation
Related Documentation
The standard documentation set for Red Brick Decision Server includes the
following documents.

Document Description

This guide Describes warehouse architecture, supported
schemas, and other concepts relevant to databases.
Procedural information for designing and imple-
menting a database, maintaining a database, and
tuning a database for performance. Includes a
description of the system tables and the configu-
ration file.

Installation and Configuration
Guide

Provides installation and configuration infor-
mation, as well as platform-specific material, about
Red Brick Decision Server and related products.
Customized for either UNIX or Windows NT.

Messages and Codes Reference
Guide

Contains a complete listing of all informational,
warning, and error messages generated by Informix
Red Brick Decision Server products, including
probable causes and recommended responses. Also
includes event log messages that are written to the
log files.

The release notes Contains information pertinent to the current
release that was unavailable when the documents
were printed.

RISQL Entry Tool and RISQL
Reporter User’s Guide

Is a complete guide to the RISQL Entry Tool, a
command-line tool used to enter SQL statements,
and the RISQL Reporter, an enhanced version of the
RISQL Entry Tool with report-formatting
capabilities.

 (1 of 2)
14 Informix Red Brick Decision Server Administrator’s Guide

Related Documentation
In addition to the standard documentation set, the following documents are
included for specific sites.

SQL Reference Guide Is a complete language reference for the Informix
Red Brick SQL implementation and RISQL exten-
sions for Red Brick Decision Server databases.

SQL Self-Study Guide Provides an example-based review of SQL and
introduction to the RISQL extensions, the macro
facility, and Aroma, the sample database.

Table Management Utility
Reference Guide

Describes the Table Management Utility, including
all activities related to loading and maintaining
data. Also includes information about data repli-
cation and the rb_cm copy management utility.

Document Description

Client Connector Pack
Installation Guide

Includes procedures for installing and configuring
the Informix Red Brick ODBC Driver, Red Brick
JDBC Driver, the RISQL Entry Tool, and the RISQL
Reporter on client systems. Included for sites that
purchase the Client Connector Pack.

SQL-BackTrack User’s
Guide

Is a complete guide to SQL-BackTrack, a
command-line interface for backing up and
recovering warehouse databases. Includes
procedures for defining backup configuration files,
performing online and checkpoint backups, and
recovering the database to a consistent state.

Informix Vista User’s Guide Describes the Informix Vista aggregate navigation
and advisory system. Illustrates how Vista
improves the performance of queries by automati-
cally rewriting queries using aggregates, describes
how the Advisor recommends the best set of aggre-
gates based on data collected daily, and shows how
the system operates in a versioned environment.

 (1 of 2)

Document Description

 (2 of 2)
Introduction 15

Additional Documentation
Additional references you might find helpful include:

■ An introductory-level book on SQL

■ An introductory-level book on relational databases

■ Documentation for your hardware platform and operating system

Additional Documentation
For additional information, you might want to refer to the following
documents, which are available as online and printed manuals.

Online Manuals
An Answers OnLine CD that contains Informix manuals in electronic format
is provided with your Informix products. You can install the documentation
or access it directly from the CD. For information about how to install, read,
and print online manuals, see the installation insert that accompanies
Answers OnLine.

JDBC Connectivity Guide Includes information about Informix Red Brick
JDBC Driver and the JDBC API, which allow Java
programs to access database management systems.

ODBC Connectivity Guide Includes information about ODBC conformance
levels and instructions for using the Informix
Red Brick ODBClib SDK to compile and link an
ODBC application.

Document Description

 (2 of 2)
16 Informix Red Brick Decision Server Administrator’s Guide

Printed Manuals
Printed Manuals
To order printed manuals, call 1-800-331-1763 or send email to
moreinfo@informix.com. Please provide the following information when
you place your order:

■ The documentation that you need

■ The quantity that you need

■ Your name, address, and phone number

Informix Welcomes Your Comments
Let us know what you like or dislike about our manuals. To help us with
future versions of our manuals, we want to know about any corrections or
clarifications that you would find useful. Include the following information:

■ The name and version of the manual that you are using

■ Any comments that you have about the manual

■ Your name, address, and phone number

Write to us at the following address:

Informix Software, Inc.
SCT Technical Publications Department
4100 Bohannon Drive
Menlo Park, CA 94025

If you prefer to send electronic mail, our address is:

doc@informix.com

The doc alias is reserved exclusively for reporting errors and omissions in our
documentation.

We appreciate your suggestions.
Introduction 17

1
Chapter
Overview of Red Brick Decision
Server
In This Chapter . 1-3

Database Server Technology 1-4

Database Server Components 1-5
Red Brick Decision Server 1-7
Table Management Utility 1-7
RISQL Entry Tool and RISQL Reporter. 1-8
Administrator Tool 1-8
Client Connector Pack 1-8
Informix Vista 1-9
SQL-BackTrack 1-9

Database Server . 1-9
Interprocess Communication 1-10
Warehouse API Process 1-12
Server Processes 1-12
Administration Daemon Process 1-12
Log Daemon Process 1-13
Process Checker Daemon 1-13
Vacuum Cleaner Daemon 1-13
Listener Thread. 1-14
CTRL-C Coordination Thread. 1-14
Shared Memory 1-14

Database Administration Overview 1-15
Installing Red Brick Decision Server 1-15
Planning the Database Design. 1-16
Implementing the Database 1-16

1-2 Infor
Providing User Access 1-17
Initialization Files. 1-17
Macros . 1-18

Loading and Unloading Data 1-18
Loading Concurrently with Queries 1-18
Exporting Query Results 1-18
Loading Columns with VARCHAR Columns 1-19

Maintaining the Database and Tuning for Performance 1-20
Planning Backup and Restore Procedures 1-20

Aroma Sample Database 1-21

Database Limits . 1-21
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
Informix Red Brick Decision Server is a relational database management
system (RDBMS) designed for data warehouse, data mart, and online
analytical processing (OLAP) applications. Red Brick Decision Server delivers
high performance for query processing and data loading, and ease of admin-
istration. It provides a rich set of specialized features for applications that
range from a few gigabytes to well over a terabyte and from a few users to
thousands of users.

Red Brick Decision Server can scale from the workgroup to the enterprise. It
is built for a client/server environment using industry-standard open
database connectivity (Red Brick ODBC Driver) and Java database connec-
tivity (JDBC), and it is accessed using industry-standard SQL. The server SQL
extensions, called RISQL, simplify analyses in commonly used business calcu-
lations. The Vista, STARjoin, STARindex, TARGETjoin, and TARGETindex
technologies provide unparalleled ad hoc query and analysis performance
for very large databases with various schema designs. Managers and
analysts can pose numerous and creative queries to quickly receive the infor-
mation they need and make good business decisions with similar speed and
confidence.

This chapter contains the following sections:

■ Database Server Technology

■ Database Server Components

■ Database Server

■ Database Administration Overview

■ Aroma Sample Database

■ Database Limits
Overview of Red Brick Decision Server 1-3

Database Server Technology
Database Server Technology
Red Brick Decision Server is designed to provide a relational database
environment well suited for the needs of analysts and business managers
performing strategic data analysis. Such an environment requires the ability
to accommodate very large databases, to load data quickly, to formulate
meaningful queries, and to respond quickly to those queries.

Red Brick Decision Server meets these requirements through the following
features:

■ Dimensional segmentation, which allows the data and indexes of a
table to be distributed across multiple independent physical storage
units to provide partial access during data loading, improved query
performance, and improved incremental backup and restore
operations.

■ Parallel processing on single-processor and symmetric multi-
processor (SMP) systems. Parallel processing can be used in query
processing, multiuser relation scans, index building, and data
loading.

■ Red Brick extensions to SQL, called RISQL, which include functions
for rank, moving sum, moving average, cumulative total, n-tile
analysis, and market share. These functions are specifically designed
to take advantage of Red Brick Decision Server technology to
provide answers to complex queries submitted to decision-support
databases.

For more information, refer to the SQL Reference Guide, the SQL
Self-Study Guide, and the RISQL Entry Tool and RISQL Reporter User’s
Guide.

■ The Table Management Utility (TMU), which loads, indexes, and
performs referential integrity checking on data in a batch process, as
well as performing other administrative functions. Its Auto-
Aggregate mode allows aggregation of new data with existing data
during the load process. A parallel version provides faster data
loading.

For more information, refer to the Table Management Utility Reference
Guide.
1-4 Informix Red Brick Decision Server Administrator’s Guide

Database Server Components
■ Support for time-cyclic data with date data types and the ability to
segment data by date-based values.

■ A state-of-the-art RDBMS that allows arbitrary join paths between
tables.

■ Proprietary indexing technologies, STARindex and TARGETindex,
which provide fast data retrieval.

■ A macro facility that simplifies creation of reusable generalized
queries.

Database Server Components
The database server consists of the following software components:

■ Red Brick Decision Server

■ Table Management Utility

■ RISQL Entry Tool, a command-line entry tool, and RISQL Reporter, a
report generator

■ Administrator tool

Red Brick Systems also offers the following options:

■ Informix Vista, a navigation and advice system for aggregate tables

■ Informix Red Brick SQL-BackTrack, a backup and restore utility

■ Informix Red Brick Client Connector Pack which contains Red Brick
ODBC Driver and Red Brick JDBC Driver, implementations of appli-
cation programming interfaces (API)
Overview of Red Brick Decision Server 1-5

Database Server Components
The following figure illustrates the components of Red Brick Decision Server.

Figure 1-1
Red Brick Decision Server Components

Red Brick
Decision Server

Databases

Red Brick
JDBC Driver

Client applications on
Windows or UNIX

Client applications:
browsers and Java

Red Brick
ODBC Driver

Red Brick
Decision
Server

Table
Management

Utility

Database server

Input
source

Hardware
Platform
1-6 Informix Red Brick Decision Server Administrator’s Guide

Red Brick Decision Server
Red Brick Decision Server
Red Brick Decision Server accepts SQL statements and delivers the results to
client applications such as the RISQL Entry Tool, the RISQL Reporter, or any
other client tool connected to the database server through the API. On the
Windows NT operating system, Red Brick Decision Server runs as a
Windows NT service. The server functions are performed by the processes
described in “Database Server” on page 1-9.

Table Management Utility
The Table Management Utility (TMU) loads data into a database. It accepts
data in a variety of different formats, performs data type conversions and
optional data manipulation functions, and then loads the data into the user
tables. During the load process, the TMU enforces referential integrity of the
data by validating the primary key/foreign key relationships.

The TMU can perform either full or incremental loads of a table and versioned
loads with periodic commit intervals. The TMU can also be restarted to
continue the load process after interrupts or errors.

In addition to loading data, the TMU has the following capabilities or options:

■ Upgrade databases to run with a newer version of Red Brick
Decision Server.

■ Reorganize indexes to improve performance as tables are modified
over time.

■ Unload and reload data to facilitate moving a database or loading
data into other tools for analysis.

■ Automatically generate new rows necessary for referential integrity.

■ Perform data aggregations as the data is loaded (Auto Aggregate
mode).

■ Use multiple processors for load operations (Parallel TMU).

For information about the TMU, refer to Appendix A, “Example: Building a
Database,” and to the Table Management Utility Reference Guide.
Overview of Red Brick Decision Server 1-7

RISQL Entry Tool and RISQL Reporter
RISQL Entry Tool and RISQL Reporter
The RISQL Entry Tool is a command-line client tool that provides interactive
access to Red Brick Decision Server. It is designed for use primarily by
database administrators and application developers to enter RISQL queries,
retrieve data, and perform other database administration functions. The
RISQL Reporter tool provides all the functionality of the RISQL Entry Tool,
plus report-formatting capability.

The RISQL Entry Tool and the RISQL Reporter can be used from a UNIX
workstation, a network terminal emulator, or a 32-bit Windows 95 or
Windows NT client connected to Red Brick Decision Server. For more infor-
mation about these tools, refer to the RISQL Entry Tool and RISQL Reporter
User’s Guide.

Administrator Tool
The Administrator tool provides graphical database administration. This
client tool runs on Windows 95-, Windows 98-, or Windows NT-based
computers and can be used to connect to databases on either UNIX or
Windows NT to perform many database administration tasks, including
segmentation.

For more information, refer to “Administrator Tool” on page 2-24.

Client Connector Pack
The Client Connector Pack contains two application programming interfaces
(APIs), Red Brick ODBC Driver and Red Brick JDBC Driver.

Red Brick ODBC Driver allows a wide variety of ODBC-compliant database
applications to work with Red Brick Decision Server. This program allows
you to use front-end applications, such as Microsoft Access, to access infor-
mation in Red Brick Decision Server. For further information about these
APIs, refer to the Client Connector Pack Installation Guide.
1-8 Informix Red Brick Decision Server Administrator’s Guide

Informix Vista
The Red Brick JDBC Driver allows a wide variety of JDBC-compliant database
applications to work with Red Brick Decision Server. Java database connec-
tivity (JDBC) is the JavaSoft specification of a standard API that allows Java
programs to access database management systems. The JDBC Driver consists
of a set of interfaces and classes written in the Java programming language.
For more information, refer to the JDBC Connectivity Guide.

Informix Vista
The Vista option is an integrated system for aggregate navigation and advice.
It improves query performance by rewriting queries against detail data to use
precomputed aggregate data. For more information, refer to the Informix
Vista User’s Guide.

SQL-BackTrack
SQL-BackTrack provides a central point of control for backing up and recov-
ering Red Brick Decision Server databases, providing consistency and
flexibility while maintaining the availability of the database. Operating-
system utilities are another option for backup and restore.

Database Server
Red Brick Decision Server is implemented on UNIX by a set of cooperating
processes that communicate using the UNIX System V Interprocess Commu-
nication (IPC) mechanism, shared memory, and semaphores. A single
process, the warehouse daemon, starts and monitors separate server
processes for each user session. This implementation is well suited for multi-
processor systems because each server process can run on a different
processor.

For more information on server processes, refer to “Monitoring and
Controlling a Server on UNIX” on page 9-49. ♦

UNIX
Overview of Red Brick Decision Server 1-9

Interprocess Communication
Red Brick Decision Server is implemented on Windows NT by a single multi-
threaded process that runs as a Windows NT service. A Windows NT service
contains one or more threads that are always running and can start and stop
other threads. On Windows NT, threads run as processes. The individual
threads communicate using shared memory. A single thread, the Red Brick
API (rbwapid) thread, starts and monitors separate server threads for each
user session. The Table Management Utility (TMU) runs as a separate process
that communicates with the Red Brick Decision Server service.

Red Brick Decision Server for Windows NT supports the following features:

■ WinSock network protocol stack, Version 2.0

■ Windows NT unified logon

■ Unattended installation using Systems Management Server

For more information on server threads, refer to “Monitoring and
Controlling a Server on Windows NT” on page 9-52. ♦

Interprocess Communication
The following figure illustrates interprocess communication among the
database server processes. When a user uses a client tool to access a database,
the client tool communicates with the warehouse daemon and server
processes through the Red Brick ODBC Driver or Red Brick JDBC Driver.
When a user accesses the database with RISQL Entry Tool or RISQL Reporter,
these tools communicate directly with the warehouse daemon and server
processes.

On Windows NT, the Red Brick Decision Server service runs as a single
multithreaded process. The threads run as processes with names corre-
sponding to the processes on UNIX. ♦

WIN NT

WIN NT
1-10 Informix Red Brick Decision Server Administrator’s Guide

Interprocess Communication
Figure 1-2
Interprocess Communication

rbwsvr
(1 per user session)rbwsvr

(1 per user session)rbwsvr
(1 per user session)

Shared memory

Data flow
Control or status flow
Windows NT only

Client Tools

Red Brick
JDBC or ODBC Driver

rbwapid
(1 per computer)

rbwlogd
(1 per computer)

rbwadmd
(1 per computer)

rbwpchk
(1 per computer)

rbwlsnr
(1 per computer)

rbwlsnr
(1 per 60

connections)

TMU
Log filesDatabase

PSUs
Version log rbwvcd
Overview of Red Brick Decision Server 1-11

Warehouse API Process
Warehouse API Process
The warehouse daemon process (rbwapid) manages the separate server
processes (rbwsvr) and the communication between the separate server and
associated client processes. The rbwapid process creates and controls the
number of server processes, manages exceptional conditions, and handles
the termination and cleanup of the server processes. In a standard configu-
ration, the warehouse daemon process is started automatically at system
startup and runs continuously.

For more information, refer to “Monitoring and Controlling a Server on
UNIX” on page 9-49 or “Monitoring and Controlling a Server on Windows
NT” on page 9-52.

Server Processes
Red Brick Decision Server uses a process-per-user architecture in which a
new process named rbwsvr is created for each user session accessing the
database. A server process accepts SQL statements from RISQL Entry Tool,
RISQL Reporter, or any other client tool connected to Red Brick Decision
Server through Red Brick ODBC Driver or JDBC Driver, checks the statement
syntax, executes the statement, and returns any output to the client. Each
client session is serviced by its own database server process. Each server
process exists until the client terminates the session. Additional server
processes are created as needed as children of the client-connected server
process to perform parallel query processing.

Administration Daemon Process
The administration daemon process (rbwadmd) collects statistics for the
dynamic statistic tables (DSTs) and performs the actions specified by ALTER
SYSTEM statements. The rbwadmd process is started when the rbwapid process
is started.

For more information about the rbwadmd process, refer to “Administration
Daemon Process” on page 8-15.
1-12 Informix Red Brick Decision Server Administrator’s Guide

Log Daemon Process
Log Daemon Process
The log daemon process (rbwlogd) writes records to the log file when various
events occur in Red Brick Decision Server. This daemon is started automati-
cally when the rbwapid process starts. The database administrator can specify
which events to log. If nothing is specified, the log daemon logs only a
restricted set of events intended to help the Informix Customer Support
Center diagnose problems.

For more information about the rbwlogd process, refer to “Log Daemon” on
page 8-18.

Process Checker Daemon
The process checker (rbwpchk) is a process that looks for abnormally termi-
nated connections and cleans up any shared resources that might be left by
the abnormal termination. This ensures proper cleanup of the system even
when processes are terminated outside the control of Red Brick Decision
Server (for example, with a kill -9 command on UNIX or a thread exit or End
Task request from the Task Manager on Windows NT). The process checker is
started by the rbwapid process.

Vacuum Cleaner Daemon
The vacuum cleaner daemon (rbwvcd) is present in versioned databases.
There is one rbwvcd process per database. The purpose of the vacuum cleaner
is to merge committed data from the version log into the database files and
then to free the space in the version log. The vacuum cleaner is started when
you first create the version log or when the first connection is made to a
versioned database.

When changes occur in a versioned database, the changed blocks are initially
written to the version log. While these changes are taking place, the existing
committed blocks are available for query (read) operations. After the new
blocks are committed to the version log but before the new blocks are moved
back to the database files, query operations access the new blocks in the
version log.
Overview of Red Brick Decision Server 1-13

Listener Thread
The vacuum cleaner daemon process waits until no users are reading the old
version of the database and then proceeds to “vacuum” the changed blocks
from the version log back to the database files. After the data has been moved
from the version log, the vacuum cleaner then removes those blocks from the
version log, freeing space in the version log for more versioning transactions.

For more information on the version log, refer to Chapter 6, “Working with a
Versioned Database.”

Listener Thread
The listener thread (rbwlsnr) is a thread in the Red Brick Decision Server
service that listens for incoming connections. The listener thread reads the
rbw.config file and determines the port on which to listen and how many
simultaneous connections to allow (based on the value of the MAX_SERVERS
parameter). Starting the database service automatically starts the listener
thread.

CTRL-C Coordination Thread
The CTRL-C coordination thread (rbwconc) listens for CTRL-C interrupts from
the various clients connected to Red Brick Decision Server. This thread is
started by the listener thread, and there is one CTRL-C coordination thread per
60 concurrent connections.

When a CTRL-C or cancel operation is detected from a client application, the
rbwconc thread ensures that the rbwsvr thread that requested the cancel
operation terminates the operation in a clean and consistent manner.

Shared Memory
All database processes access global shared memory. For versioned
databases, a portion of shared memory is allocated for each database.

WIN NT

WIN NT
1-14 Informix Red Brick Decision Server Administrator’s Guide

Database Administration Overview
Database Administration Overview
Administration of Red Brick Decision Server databases includes the
following activities:

■ Installation, which includes preparing the database environment,
installing the software, and setting up and maintaining database
directories, files and administrator account.

■ Database design, which includes designing the schema and planning
the physical storage and index strategies.

■ Database implementation, which includes creating the system tables,
segments, user tables, and indexes and providing user access to the
database.

■ Activities related to security and user access, such as granting and
revoking access, creating macros, and providing initialization files.

■ Data load and unload, including versioning capabilities as needed
for concurrent queries and updates.

■ Tuning the database to achieve the optimal performance based on
equipment, database, and user requirements.

■ Maintenance tasks such as monitoring space and query perfor-
mance, reallocating space, and rebuilding tables and indexes as
needed, and performing periodic backups.

The following sections provide a brief overview of these activities and refer-
ences to more detailed information.

Installing Red Brick Decision Server
Red Brick Decision Server software is installed and verified from a CD-ROM
device using a menu-driven script provided by Informix. The database
administrator determines where to install the software, creates a directory in
that location, and runs the installation script from the CD-ROM. Menu selec-
tions then drive the installation and verification process, prompting for
configuration information, installing the software, creating a configuration
file, and creating and loading the Aroma sample database. Subsequent instal-
lations of maintenance releases are also performed from the installation
script.
Overview of Red Brick Decision Server 1-15

Planning the Database Design
The database administrator must create a specific administrator account to
use for the installation and other administrative tasks. This account is
referred to throughout Red Brick Decision Server publications as the redbrick
user. The installation process ensures correct file access for all users.

The database administrator activates any purchased options using the
individual license keys provided when the options are purchased.

For more information about the installation procedure, refer to the Installation
and Configuration Guide.

Planning the Database Design
Red Brick Decision Server supports all types of database schemas, but the
database designer should choose a schema that works well with the type of
data warehouse that will be implemented. To implement a schema, the
database administrator must first determine how to store the data. Effective
planning for disk storage requires an estimate of the sizes of database tables
and indexes and knowledge of which file systems can accommodate the
tables and indexes. Segmented storage can be used to accommodate large
databases or to improve data access and loading performance. Referential
integrity and how it is maintained also affect the design of a database.

For information about referential integrity, segmented storage, and other
technical concepts, refer to Chapter 2, “Key Concepts.” For information about
schema design, refer to Chapter 3, “Schema Design.” For information about
index strategies, physical storage, and size estimation, refer to Chapter 4,
“Planning a Database Implementation.”

Implementing the Database
Databases are created and deleted by utilities provided with the server. These
utilities are executed as the administrative user (redbrick).

To create a new database, use the rb_creator utility on UNIX or the dbcreate
utility on Windows NT. Database access is automatically granted to a
predefined user name and password. To ensure database security, the
database administrator should immediately change this password. The
administrator can then grant access to all other database users.
1-16 Informix Red Brick Decision Server Administrator’s Guide

Providing User Access
If user-defined segments are to be used for user tables or indexes, they are
specified with CREATE SEGMENT statements. User tables and other database
objects are then created with CREATE statements, which are entered with
RISQL Entry Tool, either interactively or from file input, or with other client
tools that accept SQL input. Information about segments, tables, indexes, and
other database objects is stored in the system tables. For a list of system
tables, refer to Appendix C, “System Tables and Dynamic Statistic Tables.”
For information about the RISQL Entry Tool, refer to the RISQL Entry Tool and
RISQL Reporter User’s Guide.

For information about using the rb_creator or dbcreate utility, refer to
“Creating the Database Structure” on page 5-4. For a complete description of
the CREATE and GRANT statements, refer to the SQL Reference Guide.

The rb_deleter utility on UNIX or the dbcreate utility on Windows NT deletes
database files. Execution of the utility requires write permission for the
database files and for the parent directory. For information about these
utilities, refer to “Deleting a Database” on page 9-58.

Providing User Access
The database administrator creates user accounts, sets object privileges, and
establishes role-based security using GRANT and REVOKE statements
entered with RISQL Entry Tool, RISQL Reporter, or other client tools that
accept SQL input.

For information about user access and security, refer to Chapter 7, “Providing
Database Access and Security.” For information about managing your
database, refer to Chapter 8, “Managing Database Activity in an Enterprise.”

Initialization Files

Each time a user starts a session to access a database, that session is initialized
by server initialization files (named .rbwrc), which might exist on the global,
database, or user levels to provide startup information for that session.
Additional initialization files (named .rbretrc) provide setup information for
RISQL Entry Tool and RISQL Reporter.

For more information refer to “Initialization Files” on page 2-21.
Overview of Red Brick Decision Server 1-17

Loading and Unloading Data
Macros

Each user session is affected by macros defined for warehouse databases. The
database administrator and privileged users can define the following types
of macros to simplify creation of reusable generalized queries:

■ A public macro available to all users of a given database.

■ A private macro for a given database available only to the macro
creator.

■ A temporary macro that exists only during that session for its creator.

For more information about SQL macros, refer to “Creating and Managing
Macros” on page 5-20 and to the SQL Reference Guide.

Loading and Unloading Data
After the system and user tables have been created, use the Table
Management Utility (TMU) to load data into the database and build the
indexes used for data retrieval. Data can be loaded either in bulk or incre-
mentally. Although the load performance is better when the data is ordered,
the TMU can also load unordered data.

For information about the TMU and loading or unloading tables, refer to
Appendix A, “Example: Building a Database,” and to the Table Management
Utility Reference Guide.

Loading Concurrently with Queries

To perform updates concurrently with queries, use the versioning feature.
For more information on versioning, see Chapter 6, “Working with a
Versioned Database.”

Exporting Query Results

To export query results efficiently to specified files, use the EXPORT feature.
For information about the EXPORT statement, refer to the SQL Reference Guide.
For information about task authorization for this feature, refer to “Task
Authorizations” on page 7-12.
1-18 Informix Red Brick Decision Server Administrator’s Guide

Loading and Unloading Data
Loading Columns with VARCHAR Columns

Informix recommends that you not store character strings with trailing
blanks as VARCHAR data types unless they have significance for your appli-
cation. Remove insignificant trailing blanks from data strings when the data
is being prepared for a load. If necessary, you can remove trailing blanks
during a TMU load using the TRIM or RTRIM function although it is probably
more efficient to remove them during the upstream cleansing process.

Blanks at the end of a VARCHAR column might result in indeterminate or
unexpected query results. For example, consider a VARCHAR column, Vc,
that contains both the values ’zebra’ and ’zebra^’, where ̂ represents a space.
The following query might return 5 or 6, depending on whether the server
decides to use ’zebra’ or ’zebra^’:

select length(max(vc)) from t;

Both values are equal and are equally likely to be chosen as the maximum
value. The actual value that is chosen can depend on the order of the values
in the table, the query plan chosen, and the degree of parallelism used.

Trailing blanks are significant in comparisons based on LIKE predicates. For
example, the constraint "vc LIKE ’z%^’" will be satisfied by rows containing
’zebra^’ but not ’zebra’. In this case, the results are consistent but might not
reflect the result that the user expects.

To avoid problems with indeterminate or unexpected query results,
eliminate trailing blanks in VARCHAR data whenever possible. In most cases,
trailing blanks are not required and use unnecessary storage. In cases where
it is preferable to pad character strings with blanks (for example, to allow
comparisons between values in CHAR columns and VARCHAR columns), use
them consistently. For example, if one trailing blank is needed, make sure
that every value has exactly one trailing blank. If program logic requires a
minimum column width, ensure that only values of less than the minimum
are padded with trailing blanks to the minimum column width and that all
other values are stripped of trailing blanks.
Overview of Red Brick Decision Server 1-19

Maintaining the Database and Tuning for Performance
Maintaining the Database and Tuning for Performance
As a database is modified over time, the database administrator must
perform the following maintenance tasks:

■ Monitoring query performance.

As circumstances and the database environment change, the
database administrator can improve performance by modifying
configuration parameters, adjusting memory limits, providing
temporary space allocations, reorganizing tables to improve data
storage and access, and creating new indexes as needed.

■ Monitoring database storage requirements and allocating additional
space as needed to accommodate growing databases.

■ Altering tables and segments to reflect changes in data or the
database.

■ Performing periodic backups to prevent unrecoverable data loss.

■ Monitoring and controlling database activities.

For information about database maintenance and performance tuning, refer
to Chapter 9, “Maintaining a Data Warehouse,” and Chapter 10, “Tuning a
Warehouse for Performance.” For more information about managing
databases in an enterprise, refer to Chapter 8, “Managing Database Activity
in an Enterprise.”

Planning Backup and Restore Procedures
Every database administrator should have a recovery plan in case a database
is damaged and becomes unusable. If your database is modified by incre-
mental loads or insert, update, or delete operations, or if you cannot retain all
of the input files used to create the database, back up the database periodi-
cally for protection in case of system or software failure. In determining how
often to back up a database, you must balance the amount of data at risk and
the time required for a backup.
1-20 Informix Red Brick Decision Server Administrator’s Guide

Aroma Sample Database
You have the following choices for implementing a backup and restore
policy:

■ SQL-BackTrack is the recommended solution for operating systems
or platforms on which it is available. For more information about this
option, refer to the SQL-BackTrack User’s Guide.

■ If SQL-BackTrack is not available for your site, you can use the file-
oriented backup and restore facilities provided for your operating
system; for example, the UNIX-based dump and restore commands or
similar utility programs available for Windows NT.

Aroma Sample Database
Aroma, a small database for analyzing sales at a chain of specialty coffee
stores, is used for many examples in this guide, the SQL Reference Guide, and
the SQL Self-Study Guide. The Aroma database is installed during the
database server installation. For information on how to create and use the
Aroma database, see Appendix A, “Example: Building a Database.”

Database Limits
The following limits apply to all Red Brick Decision Server databases, SQL,
and the RISQL extensions:

■ A database can contain a maximum of 32,767 tables.

■ Each session can contain a maximum of 4,096 temporary tables.

■ A database can contain a maximum of 61,439 segments.

■ A segment can contain a maximum of 250 files, and a file can be a
maximum of 2 gigabytes. Therefore, a segment can contain a
maximum of 500 gigabytes.

■ A table can have a maximum of 7280 columns.

■ A table can have a maximum of 256 foreign keys.

■ A table can contain a maximum of 248 rows.
Overview of Red Brick Decision Server 1-21

Database Limits
■ A row in a table can contain a maximum of 8179 bytes of data if it
contains fewer than 8 columns. If it contains 8 or more columns, this
number is reduced by 1 byte for every 8 columns.

■ The maximum length of the text for a macro definition is 1024 bytes.

■ The maximum length of a CHAR or VARCHAR column is 1024 bytes.

■ The maximum length of a string literal is 1024 bytes.

■ The maximum length of a database identifier is 128 bytes.

■ The maximum length of a database password is 128 characters. For
RISQL Entry Tool and RISQL Reporter, the maximum length for
passwords supplied in response to the prompt is 8 characters.

Exception: The following exceptions apply to databases used with Red Brick
Decision Server for Workgroups:

■ A database can contain a maximum of two databases.

■ A table can contain a maximum of 5 gigabytes of data.

■ The maximum number of named user IDs (1, 5, 10, 20, or 30) depends on
the type of license purchased.

■ Only one segment can be associated with each table or index.

Warning: Do not use these figures to estimate database file sizes. For information on
calculating space requirements for tables and indexes, refer to Chapter 4, “Planning
a Database Implementation.”
1-22 Informix Red Brick Decision Server Administrator’s Guide

2
Chapter
Key Concepts
In This Chapter . 2-3

Data Loading . 2-4

Parallel Processing 2-5

Physical Implementation of Databases 2-5
Indexes and Retrieval Strategies 2-6
Segmented Storage 2-7

Named and Default Segments 2-7
Implementation 2-8
PSU Size and Growth 2-9
Distributing Data Among Segments 2-10
Online and Offline Segments 2-12
Partial Availability of Tables and Indexes 2-13

Precomputed Views for Increased Query Performance 2-13

Database Directories and Files 2-14
Logical Database Names 2-15
Segment Names 2-20

Configuration and Initialization 2-20
Configuration File 2-20
Initialization Files 2-21

.rbwrc Files 2-21

.rbretrc Files 2-22

.odbc.ini Files 2-23
SET Commands 2-23
Environment Variables 2-24
Administrator Tool 2-24

2-2 Infor
Server Locale . 2-26
Components of a Locale 2-26

Language 2-27
Territory . 2-27
Character Set 2-28
Collation Sequence 2-28

Defining the Server Locale 2-30
System Table References to Locales. 2-30
Nontranslated Text 2-31

Overriding the Server Locale 2-31
Specifying a Locale for a Client Tool 2-32
Setting the RB_NLS_LOCALE Environment Variable 2-32

Ensuring Client/Server Compatibility 2-34
Character Set Conversions. 2-34
Message System 2-35

File Ownership and Permissions 2-36

Database Authorizations and Privileges. 2-36

Versioned Databases 2-38

Referential Integrity 2-39
Load and Insert Operations. 2-39
Delete Operations and Cascaded Deletes 2-40
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
To perform database administration functions effectively, you should under-
stand the key concepts of Red Brick Decision Server. This chapter is divided
into the following sections:

■ Data Loading

■ Parallel Processing

■ Physical Implementation of Databases

■ Database Directories and Files

■ Configuration and Initialization

■ Server Locale

■ File Ownership and Permissions

■ Database Authorizations and Privileges

■ Versioned Databases

■ Referential Integrity
Key Concepts 2-3

Data Loading
Data Loading
Data is loaded in a bulk process using the Table Management Utility (TMU),
which indexes data and verifies referential integrity as it is loaded. Data
loading is CPU intensive, so more powerful CPUs improve load times roughly
in proportion to their CPU speed rating. Despite the CPU-intensive nature of
the load process, loading a Red Brick Decision Server database is as fast as or
faster than loading databases for other RDBMSs.

The TMU supports the following types of data:

■ Single-byte and multibyte character data, including ASCII and
IBM U.S. EBCDIC character data

■ Integer and numeric data for each supported hardware platform and
for IBM System/370

■ IBM System/370 packed-decimal and zoned-decimal data

Data can be loaded from:

■ disk files.

■ a pipe from another system program.

■ TAR format or ANSI standard label tapes. ♦

For tables that have multiple user-defined indexes, parallel index creation
reduces the total time required to create the indexes and is often more conve-
nient than creating each index separately.

User-defined indexes can be defined either before or after data is loaded. For
more information on loading tables with indexes, refer to “Creating Indexes”
on page 5-15.

UNIX
2-4 Informix Red Brick Decision Server Administrator’s Guide

Parallel Processing
Parallel Processing
Red Brick Decision Server runs on a wide range of hardware systems, from
single microprocessor systems to large multiprocessor systems. The admin-
istrator can specify the degree to which database server and TMU processes
take advantage of multiple processors, balancing the system load against the
performance requirements for loading and query operations.

In addition to taking advantage of multiple processors, Red Brick Decision
Server automatically partitions the work into multiple processes, thus intro-
ducing parallel processing into systems using only a single processor. For
example, some queries can be partitioned into multiple processes based on
how the data is distributed. While one process is waiting on disk I/O, other
processes can proceed, thus increasing the efficiency and speed of query
processing.

When needed data has been strategically distributed over multiple drives
using Red Brick Decision Server dimensional segmentation, parallel
processes can perform disk accesses simultaneously, improving performance
significantly.

On UNIX, when the needed data resides on a single disk, database server
SuperScan technology allows each process to take advantage of data read by
the other processes to reduce the disk access delays. ♦

Physical Implementation of Databases
Red Brick Decision Server can support a large number of databases, essen-
tially limited only by system disk space. Typical installations create and use
from one to twenty separate databases.

Each database is a self-contained entity containing system tables, control
files, and an arbitrary number of user tables. User tables contain the actual
data that users access and update in the course of their work. In addition to
user tables, a database can contain synonyms and views, which provide
logical organization for table data and for macros, which define frequently
executed operations on that data.

UNIX
Key Concepts 2-5

Indexes and Retrieval Strategies
Indexes and Retrieval Strategies
User tables are supported by a variety of indexes. Indexes are invisible to
database users but are critical for data integrity and performance. Red Brick
Decision Server automatically provides those indexes required for data
integrity. The database administrator can create additional indexes to
improve performance:

■ A STAR index optimizes join processing (STARjoin) between tables
related by foreign key references or tables joined over common
columns. This index is a join acceleration index for multitable joins.
An administrator can create one or more STAR indexes for better
performance. When multiple STAR indexes exist, Red Brick Decision
Server automatically selects the best STAR index to use for executing
each query by applying a cost model.

■ A B-TREE index improves performance and ensures data integrity.
Red Brick Decision Server automatically creates a B-TREE index on
each primary key to ensure uniqueness and foreign key referential
integrity. An administrator can improve query performance by
creating an additional B-TREE index on any table column or columns
that will be constrained in queries. Additional indexes, however,
require additional storage space, a time/space trade-off for the
database administrator.

■ A TARGET index improves performance when queries consist of
multiple weakly selective constraints. Performance improvements
are two-fold. The queries run faster, and their processing requires
less memory.

■ TARGETjoin processing uses TARGET or B-TREE indexes on the
foreign keys of a referencing (fact) table to perform multitable joins.
TARGETjoin processing is complementary to STARjoin processing. A
combination of the two technologies offers excellent performance
over a wide range of queries.
2-6 Informix Red Brick Decision Server Administrator’s Guide

Segmented Storage
Segmented Storage
User tables and indexes are each stored in segments, which are collections of
operating-system files, or physical storage units (PSUs), that provide the
physical disk storage required by table and index data.

Segmented storage offers the following advantages for very large databases:

■ Allows the administrator to map logical data to physical segments,
with dynamic allocation of storage as needed.

■ Simplifies database loading and updating; particularly useful with
time-cyclic data.

■ Provides the separation of data necessary for parallel query
processing. Parallelism during query processing is limited by the
number of segments and PSUs used for a table (both data and
indexes).

■ Provides locking at the segment level rather than at the table level so
that loading and query operations can often proceed simultaneously.

■ Allows partial functionality of queries when some segments of data
or some indexes are not available.

■ Provides a smaller unit for data recovery in case of media failure.

Named and Default Segments

There are two types of segments: named segments and default segments.
Named segments are created explicitly by an administrator with a CREATE
SEGMENT statement. Default segments are created automatically by the
system for those tables and indexes that the administrator does not place in
a named segment or segments.

Named segments offer the database administrator extensive control over disk
space allocation, file size and placement, and database growth, but they
require more effort from the administrator to plan, create, and manage. Using
named segments, a database administrator can partition a table horizontally,
distributing the data across multiple segments. For example, sales data might
be partitioned by time periods, with each time period residing in a separate
segment. Control over the individual segments simplifies maintenance tasks
and provides better access.
Key Concepts 2-7

Segmented Storage
As an example of how segmented storage is used, consider a database that
tracks sales data for the previous two years . The data is distributed across
segments so that each segment contains one month of data. Because
individual segments can be added, loaded, or dropped independently of the
rest of the database, each month the administrator adds a segment containing
the loaded, indexed data for the current month and drops the segment
containing data for the oldest month. An administrator can make these
updates without taking the database offline, and the space in the old segment
can be used for data for the next month.

Default segments require no specific management and, for all practical
purposes, are invisible to both the administrator and users. A table or index
in a default segment cannot span multiple segments or files. Each must reside
entirely within a single PSU, or file. The PSUs for a default segment are placed
in the database directory (or in a default directory specified by the user). For
small, static tables or databases, default segments are often satisfactory. If
circumstances change and the additional control provided by named
segments is desirable, these default segments can be altered and manipulated
in the same manner as named segments.

Implementation

Segmented storage is implemented as follows:

■ A segment contains one or more physical storage units (PSUs).

■ A PSU can belong at most to one segment.

■ A segment can contain either row data for a single table or index data
for a single index, but not both.

■ Row data and indexes for the table can each span multiple segments.

A segment is located in the directory specified when it was created, in a
default location specified in a configuration file or in the directory containing
the database.
2-8 Informix Red Brick Decision Server Administrator’s Guide

Segmented Storage
The following figure illustrates how default and named segments are used.

Exception: In a database for Red Brick Decision Server for Workgroups, row data
and indexes must each reside in a single segment.

Named segments are created with a CREATE SEGMENT statement. Segments
for row data and automatic indexes are assigned to a table in the CREATE
TABLE statement. Segments for optional indexes are assigned in the CREATE
INDEX statement. If no segment is assigned to a table or index, the table or
index is created in a default segment consisting of one PSU.

PSU Size and Growth

In named segments, each PSU is defined with the following size parameters:

■ An initial size, which determines how much space is initially
allocated for that file.

■ A maximum size, which limits how large the file can grow.

■ An extend size, which defines the size of the increments by which the
file grows.

By carefully defining these sizes, you can create segments that grow to
accommodate additional data and disk space as needed.

Figure 2-1
Use of Default and Named Segments

Row data

STAR index

Primary index Primary index

Row data

STAR index

Segment

TARGET indexTARGET index

Segment

Segment

Segment

Segment Segment Segment Segment

Segment Segment Segment

Segment Segment

Segment Segment

Named segments Default segments
Key Concepts 2-9

Segmented Storage
Distributing Data Among Segments

Row data can be distributed among segments by ranges of values contained
in a specified column (the segmenting column) or by hashing. Segmenting by
ranges of values offers the advantage of knowing where the data and corre-
sponding indexes reside but can result in an uneven distribution of data.
Segmenting by hashing distributes data evenly and prevents “hot spots” but
limits the use of offline operations because the location of data is not known.
If hashing is used, the entire row is hashed.

A primary index can be segmented based on the key values of the first
column of the index, either explicitly specifying ranges of values for each
segment or specifying that the index is to be segmented by the same values
as the data. (The first column is the column named first in the PRIMARY KEY
clause.)

A STAR index can be segmented in two ways. The first method, which is the
default, distributes the index entries evenly across the segments, so each
segment contains approximately the same number of entries. The second
method distributes the index entries across the segments based on the
contents of the first column of the STAR index. The first column is the column
named first in the CREATE STAR INDEX statement. In a STAR index, the
contents of the index entry is not the value of the indexed data but the row ID
of the referenced table containing the data.

The following table summarizes the possible ways to distribute the data and
indexes among multiple segments, along with the keywords used to specify
each type of distribution.

Contents of Segments How Distributed (Segmented)

Row data By data value of segmenting column or hashing
(keywords: SEGMENT BY VALUES OF, SEGMENT BY
HASHING)

STAR indexes By the rowids of the referenced table containing the
segmented column of the STAR index (keywords: none
or SEGMENT BY REFERENCES OF)

 (1 of 2)
2-10 Informix Red Brick Decision Server Administrator’s Guide

Segmented Storage
Segment boundaries can be modified by attaching or detaching segments at
either end of the range of an existing segment, but a new segment cannot be
inserted in the middle of the range of an existing segment. The range for any
given segment can also be changed (with an ALTER SEGMENT statement), but
only if the new range includes all rows already in that segment. The new
range cannot require that data be moved.

Example

The following figure illustrates correspondence between the row data
segments and the index entry segments for a table with two indexes. This
table has a primary index, which is segmented by the data values of the first
column in the index, and a STAR index, which is segmented by references to
its first column. Note the index segments of the index segmented by the same
values as the data. The corresponding data and index segments can be taken
online or offline together to take advantage of segment operations without
interrupting use of the rest of the database. The same correspondence does
not exist between the row data segments and segments of the STAR index.

Primary index By data values of first (leading) column in the primary
index (keywords: SEGMENT BY VALUES OF)

TARGET indexes By values of the indexed column
(keywords: SEGMENT BY VALUES OF)

B-TREE indexes By values of the first (leading) indexed column
(keywords: SEGMENT BY VALUES OF)

Contents of Segments How Distributed (Segmented)

 (2 of 2)
Key Concepts 2-11

Segmented Storage
Online and Offline Segments

Each segment associated with a table or index is either online or offline.
When all segments associated with a table and its indexes are online, the table
is fully available for access. Online is the normal state. When one or more
segments associated with a table or its indexes are offline, the table is only
partially available.

A segment can be taken offline only when it is one of multiple segments
associated with a table or index. When a table or index resides in a single
segment, that segment cannot be taken offline. Consequently, default
segments, which by definition contain an entire table or index, cannot be
taken offline.

The administrator can take a segment offline to load or update it with new
data, to restore it in case of media failure or other data loss, or to detach it and
remove it from the table forever. While that segment is offline, users can still
have access to the partially available table.

Figure 2-2
Row Data Segment

and STAR Index
Segments

Primary index that is segmented like the data

Segmenting column Referenced column

Row data segment STAR index
2-12 Informix Red Brick Decision Server Administrator’s Guide

Precomputed Views for Increased Query Performance
Partial Availability of Tables and Indexes

Query behavior on a table that is partially available because of offline row
data segments is controlled by a SET command with the following options:

■ Process all queries and return the results. If the query attempts to
access offline segments, issue a warning that the results might be
inaccurate, incomplete, or invalid because of offline segments.

■ Disallow only those queries that attempt to access offline segments
of a table. Other queries on the table return results.

■ Disallow all queries on a table that has offline segments.

Query behavior on a table that is partially available because of offline index
segments is also controlled by a SET command that determines whether to
consider all indexes or only fully available indexes in selecting a query-
processing strategy. For more information about controlling query behavior
with partially available tables, refer to “Query Behavior on Partially
Available Tables” on page 10-25 and “Use of Partially Available Indexes” on
page 10-27.

No operation that modifies the contents of a table or index—except an offline
load operation—is allowed on a partially available table. These operations
include load, insert, update, and delete operations, and also creating and
dropping indexes. A delete operation on a table that is referenced by a foreign
key of a partially available table is not allowed.

Precomputed Views for Increased Query Performance
Aggregate tables can dramatically increase query performance for large
databases. If you have installed the Vista option, you can define precomputed
views so that queries are automatically rewritten to use the best aggregate
table available. A precomputed view definition includes:

■ A physical table containing precomputed aggregate values.

■ A logical view that allows the query rewrite engine to be aware of the
precomputed table and then rewrite queries that are submitted
against a detail-level table (for example, Daily_Sales) to a precom-
puted table (for example, Monthly_Sales).
Key Concepts 2-13

Database Directories and Files
Additionally, you can define logical rollup hierarchies that allow queries that
do not exactly match the data in the precomputed (aggregate) table to be
rewritten against the precomputed table.

When planning your physical implementation of the database, you must
plan for the precomputed (aggregate) tables you intend to create. These
aggregate tables are just like any other tables. Therefore, they can and should
be segmented and indexed. They often contain primary key/foreign key
definitions, so STAR indexes can be defined to enable STARjoin processing,
and TARGET and B-TREE indexes can be defined on the foreign keys to enable
TARGETjoin processing.

Vista also includes an Advisor, which stores query history in log files. The
Advisor uses these log files to keep track of how often the current precom-
puted views in your database are being accessed, as well as to suggest the
ideal set of precomputed views to create based on the performance benefit
they would provide.

For detailed information on using Vista, refer to the Informix Vista User’s
Guide

Database Directories and Files
A database is initially created in a single directory. This directory, termed the
database directory, contains control files and system tables. With default
segments, the database directory contains all of the files with user tables and
indexes. With named segments, however, these files can reside in additional
directories that are not subdirectories of the database directory or not even in
the same file system.

The database directory and other directories containing named segments can
be located anywhere in the operating-system file space (that is, on any file
system and located anywhere in the directory structure of that file system).

All directories and files relating to a database and its segments must be
owned by the redbrick user. For maximum security, read or write access
should not be extended to any other user or group. Access to the contents of
the database and to tablespace directories and files is controlled by Red Brick
Decision Server.
2-14 Informix Red Brick Decision Server Administrator’s Guide

Logical Database Names
Logical Database Names
Users specify a logical database name for the database they want to access.
Red Brick Decision Server automatically translates this logical name to the
appropriate pathname. Mappings between logical database names and
database directory paths are defined by the administrator and stored in the
rbw.config file.

The following examples illustrate the contents and organization of typical
database directories.

Example

Assume that a database is created with the following statements using
default segments. The database directory is newdb, located in the path
/warehouse/mktg/newdb on UNIX and c:\warehouse\mktg\newdb on
Windows NT.

CREATE TABLE period (
...
PRIMARY KEY (perkey));

CREATE TABLE product (
...
PRIMARY KEY (prodkey));

CREATE TABLE market (
...
PRIMARY key (mktkey));

CREATE TABLE fact1 (
...
PRIMARY KEY (perkey, prodkey, mktkey)
FOREIGN KEY (perkey) REFERENCES period (perkey)
FOREIGN KEY (prodkey) REFERENCES product (prodkey)
FOREIGN KEY (mktkey) REFERENCES market (mktkey));
Key Concepts 2-15

Logical Database Names
The following figure illustrates the contents of the directory containing this
database, which uses default segments.

With default segments, each table and index is stored in a separate segment,
each segment initially consisting of a single PSU. If the table outgrows a single
PSU (file), you can add more PSUs as needed to hold the data.

Example

Assume that the same database is created in the newdb directory but
segments are created to hold the table Fact1 and its indexes. Data in this table
is segmented by time period, putting 1999 data in one segment and 2000 data
in another segment. The primary key index is created and placed in a third
segment.

CREATE SEGMENT fact_99
STORAGE ’/disk1/fact_99/99_dat1’

MAXSIZE 1000 initsize 100 extendsize 100,
STORAGE ’/disk1/fact_99/99_dat2’

MAXSIZE 1000 initsize 100 extendsize 100;
CREATE SEGMENT fact_00

STORAGE ’/disk2/fact_00/00_dat1’
MAXSIZE 1000 initsize 100 extendsize 100,

STORAGE ’/disk2/fact_00/00_dat2’
MAXSIZE 1000 initsize 100 extendsize 100;

Figure 2-3
Directory of Logical

Database Names
RB_DEFAULT_IDX
RB_DEFAULT_INDEXES
RB_DEFAULT_LOCKS
RB_DEFAULT_SEGMENTS
RB_DEFAULT_TABLES
RB_DEFAULT_LOADINFO
dfltseg1_psu1
dfltseg2_psu1
dfltseg3_psu1
…
dfltseg8_psu1

Database system files created by rb_creator
on UNIX or db_create on Windows NT

Created by TMU LOAD operation

Default segments for tables and indexes
created by CREATE TABLE statements

In newdb directory

UNIX
2-16 Informix Red Brick Decision Server Administrator’s Guide

Logical Database Names
CREATE SEGMENT fact_pi
STORAGE ’/disk2/fact_pi/fact_pi1’

MAXSIZE 100 initsize 20 extendsize 10,
STORAGE ’/disk2/fact_pi/fact_pi2’

MAXSIZE 100;
CREATE TABLE market (

...
PRIMARY key (mktkey));

CREATE TABLE product (
...
PRIMARY KEY (prodkey));

CREATE TABLE period (
...
PRIMARY KEY (perkey));

CREATE TABLE fact1 (
...
PRIMARY KEY (perkey, prodkey, mktkey)
FOREIGN KEY (perkey) REFERENCES period(perkey)
FOREIGN KEY (prodkey) REFERENCES product (prodkey)
FOREIGN KEY (mktkey) REFERENCES market (mktkey)

) DATA IN (fact_99, fact_00)
SEGMENT BY VALUES OF (perkey)
RANGES (MIN:’1998-12-31’, ’2000-01-01’:MAX)

PRIMARY INDEX IN fact_pi;

The directories /disk1/fact_99, /disk1/fact_00, and /disk2/fact_pi must exist
before the CREATE SEGMENT statements can be issued. However, the
segment name and directory name need not be identical. ♦

CREATE SEGMENT fact_99
STORAGE ’c:\disk1\fact_99\99_dat1’

MAXSIZE 1000 initsize 100 extendsize 100,
STORAGE ’c:\disk1\fact_99\99_dat2’

MAXSIZE 1000 initsize 100 extendsize 100;
CREATE SEGMENT fact_00

STORAGE ’c:\disk2\fact_00\00_dat1’
MAXSIZE 1000 initsize 100 extendsize 100,

STORAGE ’c:\disk2\fact_00\00_dat2’
MAXSIZE 1000 initsize 100 extendsize 100;

CREATE SEGMENT fact_pi
STORAGE ’c:\disk2\fact_pi\fact_pi1’

MAXSIZE 100 initsize 20 extendsize 10,
STORAGE ’c:\disk2\fact_pi\fact_pi2’

MAXSIZE 100;
CREATE TABLE market (

...
PRIMARY key (mktkey));

CREATE TABLE product (
...
PRIMARY KEY (prodkey));

WIN NT
Key Concepts 2-17

Logical Database Names
CREATE TABLE period (
...
PRIMARY KEY (perkey));

CREATE TABLE fact1 (
...
PRIMARY KEY (perkey, prodkey, mktkey)
FOREIGN KEY (perkey) REFERENCES period(perkey)
FOREIGN KEY (prodkey) REFERENCES product (prodkey)
FOREIGN KEY (mktkey) REFERENCES market (markey)

) DATA IN (fact_99, fact_00)
SEGMENT BY VALUES OF (perkey)
RANGES (MIN:’1999-12-31’, ’2000-01-01’:MAX)

STAR INDEX IN fact_pi;

The directories c:\disk1\fact_99, c:\disk1\fact_00 and c:\disk2\fact_pi must
exist before the CREATE SEGMENT statements can be issued. However, the
segment name and directory name need not be identical. ♦

The following figure illustrates how the database files are stored using
named segments.
2-18 Informix Red Brick Decision Server Administrator’s Guide

Logical Database Names
Figure 2-4
Example of Segmentation Schema of Database System Files

disk1

Named segments and PSUs for the table Fact1
(created by CREATE SEGMENT statements)

Named segments and PSUs for the table Fact1 STAR index
(created by CREATE SEGMENT statements)

RB_DEFAULT_IDX
RB_DEFAULT_INDEXES
RB_DEFAULT_LOCKS
RB_DEFAULT_SEGMENTS
RB_DEFAULT_TABLES
RB_DEFAULT_LOADINFO
dfltseg1_psu1
dfltseg2_psu1
dfltseg3_psu1
…
dfltseg8_psu1

Database system files created by
rb_creator or db_create utility

Created by TMU LOAD operation

Default segments for tables and indexes
created by CREATE TABLE statements

In newdb directory

fact_99
99_dat1
99_dat2

disk2

fact_00
00_dat1
00_dat2

00_star1
00_star2

fact_star
Key Concepts 2-19

Segment Names
Segment Names
The RBW_SEGMENTS system table contains the segment names of each table,
as the following example shows:

select name, tname, iname from rbw_segments;
NAME TNAME INAME
RBW_SYSTEM NULL NULL
DEFAULT_SEGMENT_1 PERIOD NULL
DEFAULT_SEGMENT_2 PERIOD PERIOD_PK_IDX
DEFAULT_SEGMENT_3 PRODUCT NULL
DEFAULT_SEGMENT_4 PRODUCT PRODUCT_PK_IDX
DEFAULT_SEGMENT_5 MARKET NULL
DEFAULT_SEGMENT_6 MARKET MARKET_PK_IDX
FACT_99 FACT1 NULL
FACT_00 FACT1 NULL
FACT_STAR FACT1 FACT1_STAR_IDX

Configuration and Initialization
Red Brick Decision Server uses configuration and initialization files, SET
commands, and environment variables to customize each server installation.
Combinations of file settings and interactive SET commands can be used to
provide varying degrees of global, database, and user customization.

Configuration File
Server configuration information is contained in the rbw.config file, which
resides in the database server directory. This file is generated during the
installation process and contains configuration and performance-tuning
parameters used by the warehouse daemons, database server, and TMU
processes on UNIX and by the Red Brick Decision Server service and TMU on
Windows NT. It also contains license keys for options and logical database
name definitions. It can be edited with a text editor.
2-20 Informix Red Brick Decision Server Administrator’s Guide

Initialization Files
Initialization Files
Red Brick Decision Server uses three types of initialization files: .rbwrc files
for server (rbwsvr) initialization, .rbretrc files for RISQL Entry Tool and RISQL
Reporter initialization, and Red Brick ODBC Driver initialization files, which
contain definitions for Red Brick ODBC Driver applications. (Red Brick JDBC
Driver does not have initialization files because the machine name and port
are given in the JDBC URL.)

.rbwrc Files

The .rbwrc files are used by the database administrator to customize each user
session according to specific user needs. These files can contain any non
query SQL statements, such as CREATE MACRO, INSERT and SET. File permis-
sions must be set so that the server process, which runs as the redbrick user,
can read the .rbwrc files and write to the .rbwerr file.

Up to four .rbwrc files determine a user profile. These files are processed in
the following order.

UNIX File Windows NT File Description

$RB_CONFIG/.rbwrc %RB_CONFIG%\.rbwrc A global warehouse file in the directory that contains
rbw.config.

$RB_PATH/.rbwrc %RB_PATH%\.rbwrc A database-specific file in each database directory.

$HOME/.rbwrc None A user-specific file in each user’s home directory for
those users who access databases with RISQL Entry
Tool or RISQL Reporter running on the same
computer as Red Brick Decision Server.

$RB_PATH/
.rbwrc.DBUSERNAME

%RB_PATH%\
.rbwrc.DBUSERNAME

A user-specific initialization file. If used, this file
must reside in the database directory with the
following extension:

.rbwrc.DBUSERNAME

where DBUSERNAME is the database user name,
not the operating-system user account name. The
extension must be uppercase.
Key Concepts 2-21

Initialization Files
The processing order allows database settings to override server settings, and
user settings to override both database and server settings.

The server and database initialization files are managed by the database
administrator. These files generally contain global or database-specific
temporary macros, access-control statements, values that limit the size of
database working files, and directives for placement of NULL values in
ORDER BY clauses.

User-specific files can be edited and changed by individual users. These files
are generally used for temporary macros and for SET commands to customize
a user session.

The commands in these files, along with any error, informational, or warning
messages they generate, are echoed to a log file named .rbwerr in the user’s
home directory. Each time the server process (rbwsvr) is started, these log files
are deleted to prevent their unlimited growth.

.rbretrc Files

The .rbretrc files customize the execution profile of a user accessing the server
with RISQL Entry Tool and RISQL Reporter. These files contain SET
commands. For example, a command specifies the editor of choice or
specifies display widths for system table columns to format the screen
displays. Two .rbretrc files, processed in the following order, can affect a user.

The processing order allows user settings to override server settings.
Command-line settings override settings in the .rbretrc files but exist only for
the current session.

UNIX File Windows NT File Description

$RB_CONFIG/.rbretrc %RB_CONFIG%\.rbretrc A file in the directory that contains rbw.config. This
file initializes the session of any user who accesses
the server.

$HOME/.rbretrc %HOMEPATH%\.rbretrc A user-specific file in each user’s home directory. It
affects a single user profile.
2-22 Informix Red Brick Decision Server Administrator’s Guide

SET Commands
.odbc.ini Files

The .odbc.ini file on UNIX or .odbc.init file on Windows NT contains Red Brick
ODBC Driver Data Source Name (DSN) definitions. This user-specific initial-
ization file in each user’s home directory provides DSN definitions for Red
Brick ODBC Driver applications. The DSNs are used by client applications,
RISQL Entry Tool, or RISQL Reporter connecting to Red Brick Decision Server
through Red Brick ODBC Driver. A DSN is a logical name that defines a server,
a logical database name, a database user name, and optionally a database
password.

On UNIX, a template file named odbc.ini is created in the redbrick directory
upon installation. From this template file, each user can make a customized
Red Brick ODBC Driver initialization file located in $HOME/.odbc.ini. On
Windows NT, use the ODBC manager to modify the DSNs.

For more information, refer to the ODBC Connectivity Guide. For information
on Red Brick JDBC Driver, refer to the JDBC Connectivity Guide.

SET Commands
SET commands are used to configure and customize the database server, the
TMU, and the RISQL Entry Tool and RISQL Reporter. These commands can be
specified in several ways, depending on the command:

■ In either the .rbwrc or .rbretrc initialization file

■ In a TMU control file

■ From the RISQL Entry Tool or RISQL Reporter

■ From a client tool sending SQL statements
Key Concepts 2-23

Environment Variables
Environment Variables
The server uses the following environment variables.

Administrator Tool
The Administrator tool for Red Brick Decision Server provides graphic
administration of the database server. It is a stand-alone application that runs
under the Windows operating systems. It can be used to access databases
running on either UNIX or Windows NT. The Administrator tool provides
direct access to multiple databases for database administration tasks,
including the following:

■ Create, alter, and drop users, roles, macros, tables, indexes,
segments, synonyms, and views.

■ Perform detailed segment-related tasks such as examining and
verifying PSUs, attaching and detaching segments, and defining PSU
attributes.

Environment
Variable Description

RB_CONFIG Pathname to the directory containing the rbw.config file, which is
usually the directory containing the bin directory of server
executable files.

RB_DSN Defines data source name (DSN). For more information, refer to
the Client Connector Pack Installation Guide.

RB_EXE
(WIN NT)

Name of the Red Brick Service executable, set to service.exe by
default.

RB_HOME
(WIN NT)

Pathname of the home directory where Red Brick Decision Server
is installed.

RB_HOST Logical name used to identify the warehouse daemon process on
UNIX or the Red Brick Decision Server service on Windows NT.

RB_PATH Logical database name, as defined in rbw.config file by a pathname
to a database directory. Used to determine which database to
access.
2-24 Informix Red Brick Decision Server Administrator’s Guide

Administrator Tool
■ Grant and revoke privileges and authorizations for users and roles.

■ Perform general database tasks such as quiescing, resuming,
resetting the administration daemon, and resetting statistics on the
database.

■ Control user activity and change the priority of a current user
session.

■ Manage database logging operations.

■ Manage database accounting activity.

■ Set the database backup option (SQL-BackTrack option).

■ Determine the actual and maximum size of tables and indexes in a
database.

Additionally, the Administrator tool allows you to graphically view:

■ The relationships between referenced and referencing tables in the
database.

■ The structure of your file systems.

■ Information about the data, index, and unattached segments in your
database, as well as the backup segment (SQL-BackTrack option).

■ The structure of your database, showing users, roles, macros, and
data objects (tables, system tables, views, and synonyms).

■ Property information about each data object, gathered from the
relevant system tables.

The Administrator tool also provides an interactive SQL window that
allows you to enter SQL statements manually and a Show DDL window in
which you can view the SQL statements that were used to create a selected
database object.
Key Concepts 2-25

Server Locale
Server Locale
This section defines the term locale, describes how the server locale is
specified during installation, explains how to override the locale for a client
tool, discusses some compatibility issues that might arise in a client/server
environment, and explains the effect of the locale specifications on the
message system. The following sections are included:

■ Components of a Locale

■ Defining the Server Locale

■ Overriding the Server Locale

■ Ensuring Client/Server Compatibility

Components of a Locale
The unique combination of a language and a location is known as a locale. The
server locale, defined during installation, is the administrator’s mechanism
for controlling the runtime behavior of databases. A locale specification
consists of four components: language, territory, character set, and collation
sequence. For example:

Japanese_Japan.MS932@Binary

where

■ Japanese = language

■ Japan = territory

■ MS932 = character set

■ Binary = collation sequence

The following sections explain each locale component in detail. For detailed
information about specifying a server locale, refer to “Defining the Server
Locale” on page 2-30.
2-26 Informix Red Brick Decision Server Administrator’s Guide

Components of a Locale
Language

The language component (in conjunction with the territory) controls which
translation is used. In general, text strings are accepted and displayed in the
user’s chosen language. These strings include information and warning
messages, object names, month and day names, and character data returned
in query results. However, the fixed elements of a programming language,
such as the keywords used in SQL statements, are not translated.

Territory

The territory component controls country-dependent information such as
currency symbols, numeric and monetary formatting rules, and date and
time formats. For example, although English is used in both the United States
and the United Kingdom, and Spanish in both Spain and Mexico, these
languages differ according to the location. (In some cases, a single territory
applies to more than one country in a region.)

The formatting rules for various noncharacter data types vary around the
world. For example, in much of Europe, the decimal point in a floating-point
number is represented by a comma. However, in some European countries
and the United States, the decimal point is represented by a period. Similarly,
the thousands separator in numbers varies, and numbers are not separated
into groups of 1,000 in some parts of the world.

The rules for formatting dates are also subject to local convention. The order
of the components of a date (year, month, day), the character separating the
components, the names of the components, how they are abbreviated, and
even the calendar can all vary by location. Time can be represented based on
either a 12-hour or a 24-hour clock, and the Latin labels “A.M.” and “P.M.”
change for different languages. The formatting rules for currencies also vary
widely, primarily in the placement of the currency symbol.
Key Concepts 2-27

Components of a Locale
Character Set

The character set component specifies the character encoding scheme or code
page used to format and display information. A character set specifies how a
set of characters used by one or more languages is mapped to a somewhat
arbitrary set of numbers. These numbers are referenced when keyboard
input is converted to information displayed on the screen. For a character to
be recognizable, every system that processes it must use the same encoding.

In the United States, a 7-bit encoding known as ASCII is commonly used.
However, this encoding is inadequate for international use because all 128
encodings are assigned, and they do not include all the characters necessary
to represent languages other than English. Therefore, Red Brick Decision
Server also supports the following character encodings:

■ 8-bit encodings, which use the eighth bit of the byte to extend ASCII
and can represent 256 characters. Eight-bit encodings are adequate
for most European languages and have the advantage of preserving
the property that a byte and a character are the same size.

■ Multibyte encodings, which allow the width of a character to vary
from 1 to 4 bytes. Multibyte encodings contain 7-bit ASCII as a subset.
The Asian languages (Japanese, Chinese, Korean), which require
significantly more than 256 characters, typically use a multibyte
encoding.

For a list of supported character sets and supported conversions between
character sets, refer to the Installation and Configuration Guide.

Collation Sequence

The sort component of the locale, or collation sequence, defines the rules used
to compare character strings and arrange them in the correct order. The two
main types of character comparisons are binary and linguistic.

Binary Character Comparisons

In a binary comparison, the character encoding assigned to each character is
interpreted as a number, and the numbers are compared and sorted. If the
number for one character is less than the number for another character, the
first character precedes the second in the collation sequence.
2-28 Informix Red Brick Decision Server Administrator’s Guide

Components of a Locale
Although binary comparisons are relatively fast, they do not always yield
useful results. Binary comparisons are adequate for 7-bit ASCII and English
because the binary encodings for the letters a to z appear in the correct order.
However, note the following limitations:

■ All uppercase letters sort before any lowercase letters. For example,
the lowercase letter a sorts after the uppercase letter Z.

■ When an 8-bit ASCII encoding is used, characters with encodings in
the range 128 to 255 do not sort between characters with encodings
less than 127. For example, all the vowels with diacritical marks used
in European languages appear in the upper half of the 8-bit ASCII
encoding, but most are supposed to sort together with the unmarked
vowel.

■ For some languages, a binary collation sequence is never accurate
because the sort position of a character might depend on the
character that follows.

Linguistic Character Comparisons

The solution to the limitations of binary comparisons is a linguistic or lexical
character comparison, which takes into account the customary sorting rules
associated with a language. Any given language might use more than one set
of sorting rules. For example, in some countries, the names in a telephone
directory are sorted differently from the words in a dictionary. Even though
the rules are different, both methods are considered linguistic because the
sort order has nothing to do with the binary character encoding.

A linguistic comparison is often performed by retrieving an entry from a
table for a particular character to be compared. This entry indicates where the
character resides in the sort sequence and can be compared to other entries
from the same table to determine its relationship to other characters. A
linguistic sort might also need to be context sensitive (where a character sorts
might depend on what characters precede or follow it). Because of the table
lookups and context sensitivity, linguistic comparisons are relatively slow
compared to binary comparisons.

In summary, binary comparisons are less flexible but yield better perfor-
mance, whereas linguistic comparisons do not perform as well but return
more meaningful results in international markets. Red Brick Decision Server
supports both types of comparisons, as defined in the locale specification
during installation.
Key Concepts 2-29

Defining the Server Locale
Defining the Server Locale
During the installation of the Red Brick Decision Server software, a locale
specification is requested for the server. The locale supplied during instal-
lation is stored as the NLS_LOCALE LOCALE parameter in the rbw.config file.
If no locale is supplied, the default value of this parameter is used:

English_UnitedStates.US-ASCII@Binary

This locale specification applies to the whole Red Brick Decision Server
installation, regardless of the number of databases that are created for that
installation. (An installation is defined by the contents of the rbw.config file
found in the directory referenced by the RB_CONFIG environment variable.)
This restriction means, for example, that all character columns in each
database are stored using the same character encoding and that all indexes
are sorted according to the same collation sequence.

A locale is both an attribute of stored data—a database, a TMU input file, or
a backup tape—and a configuration parameter for the database server
products that regulates their runtime behavior. In most cases, the locale
defined during installation and the operating locale of those products must
be the same. The exceptions to this rule are described in this chapter.

All nonclient products, including Red Brick Decision Server, the TMU, and
the miscellaneous utility programs, use the locale defined in the rbw.config file
to determine their runtime behavior. For example, if the language is set to
Japanese, all server and TMU error messages are displayed in Japanese.
Similarly, if the locale specifies a multibyte character set such as MS932,
database object names and character strings can contain multibyte
characters.

For full instructions about defining the server locale during installation and
for a list of supported locales, refer to the Installation and Configuration Guide.

System Table References to Locales

The server locale and the current client locale are stored in the DB_LOCALE
and NLS_LOCALE rows, respectively, of the RBW_OPTIONS system table.
2-30 Informix Red Brick Decision Server Administrator’s Guide

Overriding the Server Locale
Nontranslated Text

Regardless of the locale specified for a server installation, the following text
always appears in English:

■ Installation scripts

■ Contents of the rbw.config file

All text in this file must be in ASCII characters.

■ Contents of system tables (except for object names)

■ Log messages

■ Output of the EXPLAIN statement (except for object names)

■ Output of all Red Brick Decision Server utility programs (rb_creator
or dbcreate, rb_deleter, dbsize, and so on). However, these utilities can
handle multibyte characters in data and object names as well as
perform comparisons according to the collation sequence of the
server locale. Also, data formatting is not localized.

Overriding the Server Locale
In the client/server environment, the operating locale of the client can differ
from the server locale defined in the rbw.config file. Therefore, the locale
defined for a client tool can differ from the locale of the server. However, only
differences in language and character set are of practical value, and no
warning is given when the client and server locales do not match.

Changing the language controls the language in which messages are
displayed, and changing the character set allows the client and server to use
different character sets, as long as a successful conversion can be made. For a
list of supported character sets for each language, refer to the Installation and
Configuration Guide.

Changing the territory has little effect because territory primarily controls
display formatting, which the server does not do. Similarly, changing the sort
component has no effect because all sorting is done by the server according
to the collation sequence defined for the database.

For information on overriding the server locale with the TMU, refer to the
Table Management Utility Reference Guide.
Key Concepts 2-31

Overriding the Server Locale
Specifying a Locale for a Client Tool

A client tool can run in its own locale rather than that of the database. This
client locale is used to format output and to identify the correct message file.
Messages displayed through the client might be generated by the client or the
server. Regardless of where they are generated, all messages are displayed in
the language of the client locale.

The client and server can use different character sets, as long as those
character sets support the same language and can successfully be converted.
For example, MS932 Japanese characters can be converted to JapanEUC
Japanese characters.

The RISQL Entry Tool and RISQL Reporter are Informix client applications.
An operating locale can be set for each of these clients by setting the
RB_NLS_LOCALE environment variable. If no client locale is specified, the
client uses the server locale, as specified by the current NLS_LOCALE LOCALE
entry in the rbw.config file. This entry should not be modified.

Tip: Third-party client tools must provide their own means of specifying a locale, but
they can still use the RB_NLS_LOCALE environment variable to control character set
conversions and the locale of the messages generated by the database server.

Setting the RB_NLS_LOCALE Environment Variable

The RB_NLS_LOCALE environment variable regulates the locale for the
current user. It is the only means by which RISQL Entry Tool or RISQL
Reporter users can specify which language they want to use when they start
the application.

For example, from the UNIX C shell prompt:

%setenv RB_NLS_LOCALE German_Austria.Latin1@Default

♦

For example, from the MS-DOS shell prompt:

c:\> set RB_NLS_LOCALE=German_Austria.Latin1@Default

♦

UNIX

WIN NT
2-32 Informix Red Brick Decision Server Administrator’s Guide

Overriding the Server Locale
In these examples, the variables are as follows:

German = language
Austria = territory
Latin1 = character set
Default = collation sequence

It is not necessary to specify all four parts of a locale. However, the language
should be one of the specified components. Otherwise, the unspecified
components might default to incompatible values.

Note the following rules regarding default values for unspecified locale
components:

■ If only the language is specified, the omitted components are set to
the default values for that language. For example, if the locale is set
to:

Japanese

the complete locale specification will be as follows:

Japanese_Japan.JapanEUC@Binary

For a list of default components for each language, refer to the Instal-
lation and Configuration Guide.

■ If only the territory is specified, the language defaults to English, the
character set to US-ASCII, and the sort to Binary. For example, if the
locale is set to:

_Japan

the complete, but impractical, locale specification will be as follows:
English_Japan.US-ASCII@Binary

■ Similarly, if only the character set is specified, the language defaults
to English, the territory defaults to UnitedStates, and the sort
component defaults to Binary.

■ Finally, if only the sort component is specified, the language defaults
to English, the territory defaults to UnitedStates, and the character
set defaults to US-ASCII.

Tip: You need not specify all the separator characters (the underscore, the period, and
the @ character) in a partial locale specification. Only the character that immediately
precedes the component(s) is required, such as the underscore character (_) in the
previous territory example.
Key Concepts 2-33

Ensuring Client/Server Compatibility
Ensuring Client/Server Compatibility
Internationalization raises some potential compatibility issues in the
client/server environment. Consider these scenarios:

■ A Japanese user working on a PC might set the client locale to:
Japanese_Japan.MS932

However, the server might be using the JapanEUC character set
instead of MS932. If so, the server must perform a character set
conversion on the processed data before sending it to the client PC.
Because this character set conversion is supported, no data loss or
incompatibility should arise.

■ A French-speaking user might connect to a database with a German
locale:

French_France.Latin1 (client locale)
German_Germany.Latin1 (warehouse locale)

In this case, no character set conversion is required because German
and French both rely on the Latin1 character set. However, the user’s
client tool will display messages in French as well and use French
formatting rules for datetime data. Nonetheless, the data itself is
assumed to be German and will follow German sorting rules,
regardless of the sort component specified for the client.

■ An English-speaking user might attempt to use a Japanese database:
English_UnitedStates.US-ASCII (client locale)
Japanese_Japan.JapanEUC (warehouse locale)

Multibyte data queried by the user will not be correctly displayed
although the server will accept ASCII data in load and insert opera-
tions. The client and server locales are incompatible.

The following sections explain how to avoid and correct certain client/server
incompatibilities.

Character Set Conversions

Before configuring a client/server environment to use different character sets
for the database and client locales, make sure that conversion between those
character sets is supported.

Warning: Red Brick Decision Server provides no recovery mechanism when data loss
or data corruption occurs because of incompatible character sets.
2-34 Informix Red Brick Decision Server Administrator’s Guide

Ensuring Client/Server Compatibility
Message System

The message system should display error, warning, and information
messages to users in the appropriate language. To accomplish this, the
system maintains a separate message file for each supported language.

In the client/server environment, the locale of the client determines which
message file is used. In all other cases, the server locale determines the
message file. The language and territory components of the locale specifi-
cation control which message file is selected. In turn, messages are displayed
in the appropriate language, and the text follows the appropriate regional
conventions.

If the message file for the requested locale cannot be found, the default U.S.
English message file is used, without warning. If that message file cannot be
found, an error message is issued. This message is always in English.

Naming Convention for Message Files

To allow multiple message files in different languages to exist for a single
installation, the following filename formats are used:

■ Server error messages: RBLLTTT.MB

■ Server log messages: RLLLTTT.MB

■ Client messages: RCLLTTT.MB

where LL identifies the language and TTT identifies the territory.

All letters in message filenames are uppercase. For example, the server
message file for U.S. English is named RBENUSA.MB.

The location of the message files is indicated by the NLS_LOCALE
MESSAGE_DIR parameter in the rbw.config file.

Internal Error Messages

Internal error messages are not stored in the message files. These messages
are always displayed in U.S. English.
Key Concepts 2-35

File Ownership and Permissions
Output of the Administration and Log Daemons

The administration (rbwadmd) and log (rbwlogd) daemons or threads generate
information that tracks database activity. Although this information is not
translated, the output of these daemons might contain data that was
generated by the server and is therefore in the language of the server locale.

For more information about the administration and log daemons, refer to
Chapter 8, “Managing Database Activity in an Enterprise.”

File Ownership and Permissions
In the server installation procedure, you create an operating-system user
account. The default name for this account is redbrick although you can
choose any name. Throughout the Red Brick Decision Server documentation,
this user account is referred to as redbrick, and this user ID is used for all
database administration activities at the operating-system level.

All software is installed and owned by redbrick, with permissions set for the
necessary access. Administrative activities such as creating, deleting, and
loading databases are performed with utilities that can be run only by the
redbrick user. All database files and directories, including segments, system
and user tables, indexes, and configuration files, are owned by redbrick. Read
access should not be extended to other users or groups. Users gain access to
these files only through the server interfaces and never read or modify
database files directly.

Database Authorizations and Privileges
In addition to the redbrick account used for operating-system activities, the
database administrator uses a DBA account in each database to grant users
database access. This account exists on each new database with user name
system and password manager and has membership in the DBA system role.
From this account, the database administrator uses GRANT statements to set
up user access to each database.
2-36 Informix Red Brick Decision Server Administrator’s Guide

Database Authorizations and Privileges
The database administrator grants each user database access with a GRANT
statement that makes that user a member of a predefined system role. Red
Brick Decision Server contains three predefined system roles.

Object privileges are granted on a table-by-table basis for a specific task
(SELECT, INSERT, UPDATE, DELETE) or for all tasks (ALL PRIVILEGES).

Object privileges can be granted to PUBLIC (all members of the CONNECT
system role) or to individual users.

The database administrator can use role-based security features to control
database access with a finer degree of detail. These features allow you to
break the tasks of the RESOURCE and DBA system roles into separate task
authorizations and to create custom roles.

For more information about system roles, privileges, and role-based security,
refer to Chapter 7, “Providing Database Access and Security,” and to the SQL
Reference Guide.

System Role Description

CONNECT Authorization to access a database. A member who belongs only to
the CONNECT system role cannot create or drop database objects.

RESOURCE Authorization to create and delete tables, indexes, and views and to
grant and revoke privileges on those tables and views. The
RESOURCE system role includes the authorizations of the
CONNECT system role.

DBA Authorization to grant and revoke DBA, RESOURCE, or
CONNECT system roles and perform administration tasks. The
DBA system role includes the authorizations of the RESOURCE and
CONNECT system roles.
Key Concepts 2-37

Versioned Databases
Versioned Databases
Versioning is a mechanism where readers, typically users querying the
database, can access a verified version of the database while writers (for
example, INSERT, UPDATE, DELETE, REORG, and LOAD operations) create a
new version of the database with little or no impact on reader operations. You
can choose to provide the latest version of the database to user queries or to
provide the same version to all queries to ensure consistent results in data
analysis. An operation that is not versioning is referred to as blocking.

A transaction in a Red Brick Decision Server database is defined as a single
executable statement. There is no syntax for BEGIN TRANSACTION and
COMMIT, but they are implicit at the beginning and end, respectively, of
every SQL statement and every TMU operation executed. The duration of the
transaction is the time the statement takes to fully execute.

A versioned transaction is a transaction on a versioned database that changes
the database (for example, INSERT, UPDATE, DELETE, and LOAD operations).
Versioned transactions create new versions of the blocks they modify. These
new versions reside in the version log until the vacuum cleaner writes them
back to the database files.

Versioning is an effective method of providing concurrency on decision
support system (DSS), which is designed to perform complex analyses on
large amounts of data. In contrast, OLTP systems are designed to favor the
processing of multiple small transactions and use more complex concurrency
models that favor data manipulation over analysis. Decision support systems
are designed to perform complex analyses on large amounts of data and
process queries that often access large numbers of rows in many tables. These
complex queries are where the real value of a DSS database is realized, so the
concurrency model in a DSS environment favors query performance over
update performance.

For more information, refer to Chapter 6, “Working with a Versioned
Database.”
2-38 Informix Red Brick Decision Server Administrator’s Guide

Referential Integrity
Referential Integrity
Referential integrity is the relational property that each foreign key value in a
table exists as a primary key in the referenced table. Red Brick Decision
Server requires that referential integrity be maintained in order to produce
valid query results and also to build its STAR indexes. Referential integrity
relationships are defined with SQL FOREIGN KEY/ PRIMARY KEY clauses in
the CREATE TABLE statement and are automatically maintained both during
load, update, and insert operations to a referencing table and during delete
operations from a referenced table.

Load and Insert Operations
During a load or insert operation, if a row is to be added to a table and that
row contains a value in a foreign key column that is not present in the table
referenced by the foreign key, adding the row would violate referential
integrity, so the row is discarded. On load operations, these discarded records
can be saved to a file and reloaded later, after a new row containing the
missing foreign key value is inserted into the referenced table or after the file
has been edited to correct data conversion or content errors.

An alternative to discarding rows that violate referential integrity is gener-
ating a row with the new value and adding it to the referenced table, thereby
preserving referential integrity. The new row is filled in with default values
defined when the table was created. This alternative behavior is imple-
mented by a TMU option named Automatic Row Generation
(AUTOROWGEN).
Key Concepts 2-39

Delete Operations and Cascaded Deletes
Delete Operations and Cascaded Deletes
During a delete operation, if a row to be deleted contains a value that is refer-
enced by a foreign key in another table, a referential integrity violation is
avoided by either:

■ Deleting the original row and also deleting the referencing row from
the other table. This action is called a cascaded delete and can
cascade through a series of referencing tables.

■ Deleting neither row—that is, taking no action. This lack of action is
called a restricted delete.

The course of action to be taken—a cascaded or restricted delete—is specified
at the time the table is created by the values CASCADE or NO ACTION in the
ON DELETE clause of the CREATE TABLE statement.

During the delete operation, the system must lock not only the table from
which the row is being deleted but other tables as well. To determine which
tables to lock and whether a read or write lock is needed, the concept of an
immediate and complete family for a table is used:

■ An immediate family is the set of all tables that reference the table with
a FOREIGN KEY reference clause.

■ A complete family is the immediate family, plus all tables that
reference the immediate family tables, and so on.

For the complete family, only one type of delete action is permitted, and a
restricted delete (NO ACTION) anywhere in the complete family for a table
overrides any cascaded delete conditions.

Warning: An option to the DELETE statement (OVERRIDE REFCHECK) can be used
to omit any checks for referential integrity but should be used only with great caution
and a clear understanding of its actions.
2-40 Informix Red Brick Decision Server Administrator’s Guide

Delete Operations and Cascaded Deletes
Assume a database has two fact tables named Fact1 and Fact2; three
dimension tables named Product, Market, and Period; and two outboard
tables named Brand and Monthname, with references as illustrated by the
following figure.

The following table defines the relationships among these tables in terms of
immediate and complete families for delete locks.

Figure 2-5
Schema ExampleBrand Monthname

Product PeriodMarket

Fact1 Fact2

Table Name Immediate Family Complete Family

Fact1 None None

Fact2 None None

Market Fact2 Fact2

Product Fact1, Fact2 Fact1, Fact2

Period Fact2 Fact2

Brand Product Product, Fact1, Fact2

Monthname Period Period, Fact2
Key Concepts 2-41

Delete Operations and Cascaded Deletes
A delete operation (and the FOR DELETE option to the LOCK TABLE
statement) uses a special delete lock that provides necessary and sufficient
access to all involved tables. A delete lock locks the named table for write
(exclusive) access. The delete lock also locks all tables in the immediate
family for either read or write access, depending on the referential action
specified when the tables were created. It then locks all tables in the
immediate family of these tables in a similar manner. The complete family is
locked for write access only if all ON DELETE actions are CASCADE.
Otherwise, only the tables in the immediate family are locked for read access.

The following examples illustrate how tables are locked and referential
integrity is preserved during delete operations.

Example

This example illustrates a delete operation in which all table references are
defined for cascaded deletes.

Assume the Brand table is referenced from the Product table as follows:

brandkey char(3) not null,
...
foreign key brandkey references brand (brandkey)

on delete cascade

Assume the Product table is referenced from the Fact table as follows:

prodkey char(5) not null,
...
foreign key prodkey references product (prodkey)

on delete cascade
2-42 Informix Red Brick Decision Server Administrator’s Guide

Delete Operations and Cascaded Deletes
If a row is to be deleted from the Brand table, any row in Product that refer-
ences (has a foreign key value that matches the primary key of) the deleted
row in Brand is also deleted. Any row in Fact that references a deleted row in
Product is also deleted. The following table illustrates how cascaded deletes
work in this case.

When the delete lock is applied to the Brand table for this operation, Brand
and all tables in its complete family are locked for write access because rows
might be deleted from any of those tables. This lock denies access by other
users to any tables in the complete family until the delete lock is released.

Figure 2-6
Delete CascadeBrand

x
y
z
…

Monthname

Product
y
z
…

PeriodMarket

Fact
z
…

Cascade

From Brand, delete
row containing:

Rows deleted from:

Brand Product Fact

x Yes Not present Not present

y Yes Yes Not present

z Yes Yes Yes
Key Concepts 2-43

Delete Operations and Cascaded Deletes
Example

This example illustrates the effect of a restricted (NO ACTION) delete on a
family of tables. Delete operations are treated as if all references were
restricted.

Assume the Monthname table is referenced from the Period table as follows:

monkey char(3) not null,
...
foreign key monkey references monthname (monkey)

on delete no action

The type of reference from Fact to Period does not affect operations on
Monthname because the Period-to-Monthname reference is NO ACTION.
Nothing can be deleted from Period.

Figure 2-7
Delete No Action

Market

Fact
z
…

Cascade or no action

Product Period
y
z
…

Brand

Monthname
x
y
z
…

No action
2-44 Informix Red Brick Decision Server Administrator’s Guide

Delete Operations and Cascaded Deletes
If a row to be deleted from the Monthname table is referenced by a row in
Period, the row is not deleted from Monthname. If it is not referenced by a
row in Period, it is deleted. Because no rows can be deleted from Period, it is
not necessary to access the Fact table to check for referencing rows. The
following table illustrates how restricted deletes work in this case.

When the delete lock is applied to Monthname for this operation, the
Monthname table is locked for write access, and Period—the only table in its
immediate family—is locked for read access. No lock is applied to Fact.

Example

This example illustrates a delete operation with a restricted delete not in the
immediate family but somewhere in the complete family, which includes
both restricted and cascaded references. Delete operations are treated as if all
references were restricted.

Assume the Brand table is referenced from the Product table as follows:

brandkey char(3) not null,
...
foreign key brandkey references brand (brandkey)

on delete cascade

Assume the Product table is referenced from the Fact1 table with a cascaded
delete as follows:

prodkey char(5) not null,
...
foreign key prodkey references product (prodkey)

on delete cascade

From Monthname,
delete row containing:

Rows deleted from:

Monthname Period Fact

x Yes No rows deleted
from Period

No rows deleted
from Fact

y No

z No
Key Concepts 2-45

Delete Operations and Cascaded Deletes
Assume the Product table is referenced from the Fact2 table with a restricted
delete as follows:

prodkey char(5) not null,
...
foreign key prodkey references product (prodkey)

on delete no action

Even though the reference from Product to Brand is cascade, because another
reference in the complete family is restricted, it is just as if Brand were refer-
enced from Product with a restricted delete.

Figure 2-8

Brand
x
y
z
…

Monthname

Product
y
z
…

PeriodMarket

Fact2
z
…

Cascade

Fact1
y
z
…

No action
2-46 Informix Red Brick Decision Server Administrator’s Guide

Delete Operations and Cascaded Deletes
If a row to be deleted from Brand is referenced by Product, that row in Brand
is not deleted. The following table illustrates how the combination of
restricted and cascaded deletes works in this case.

This example does not indicate what happens in Fact2 when a row is to be
deleted from Market, Period, or Monthname. The relationships defined for
the complete families of each of those tables determine the behavior in those
families. For example, if the Market table is referenced by Fact2 with a
cascaded delete, a row deleted from the Market table can cause any corre-
sponding referencing rows to be deleted from Fact2. The NO ACTION
reference between Product and Fact2 does not affect references between Fact2
and other tables.

When the delete lock is applied to Brand for this operation, Brand is locked
for write access. Product, the only table in its immediate family, is locked for
read access. The Fact1 and Fact 2 tables are not locked. Even though y is not
referenced by Fact2, it is not deleted from Brand, Product, or Fact1.

For more examples that illustrate how the ON DELETE clause and DELETE
FROM statement affect referential integrity, refer to the DELETE statement in
the SQL Reference Guide.

From Brand, delete
row containing:

Rows deleted from:

Brand Product Fact1 Fact2

x Yes Not present No rows deleted
from Fact1

No rows deleted
from Fact2

y No No

z No No
Key Concepts 2-47

3
Chapter
Schema Design
In This Chapter . 3-3

Transaction Processing Versus Decision Support. 3-3
Transaction-Processing Databases 3-4
Decision-Support Databases 3-5

Star Schemas . 3-6
Performance of Star Schemas 3-8
Terminology . 3-8
Simple Star Schemas 3-8

Multiple Fact Tables 3-10
Multi-Column Foreign Key 3-12
Outboard Tables 3-13

Multi-Star Schemas 3-14
Views . 3-17

Considerations for Schema Design 3-18
Schema Building Blocks 3-20
Example: Salad Dressing Database 3-23

Analyzing Your Schema 3-24
Browsing the Dimension Tables 3-24
Querying the Fact Table 3-25
Determining Which Attributes to Include. 3-25

Schema Examples 3-27
Reservation System Database 3-27
Investment Database 3-29
Health Insurance Database 3-31

3-2 Infor
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
Schema design greatly influences both database performance and the ease
with which users retrieve information. This chapter assumes that you are
familiar with relational databases and includes the following sections:

■ Transaction Processing Versus Decision Support

■ Star Schemas

■ Considerations for Schema Design

■ Schema Building Blocks

■ Schema Examples

Transaction Processing Versus Decision Support
Although in theory the relational model supports databases for both trans-
action processing and decision support, in reality compromises must be
made in the design of database management software to optimize often-
conflicting design objectives. Transaction-processing databases are
optimized for the insert, update, and delete operations used to capture data,
whereas decision-support databases are optimized for query operations used
to analyze the data. Data for decision-support systems is often captured by
online transaction-processing systems and then loaded into a decision-
support system.
Schema Design 3-3

Transaction-Processing Databases
Transaction-Processing Databases
Transaction-processing systems are designed to capture information and to
be updated very quickly. They are constantly changing and are often online
24 hours a day. Examples of transaction-processing systems include order
entry systems, scanner-based point-of-sale registers, automatic teller
machines, and airline reservation applications. These systems provide opera-
tional support to a business and are used to run a business.

 Transaction-processing systems have the following characteristics:

■ High transaction rate

To ensure high throughput, transactions are simple and touch as few
tables as possible.

■ Constant change

Transactions occur in large numbers, and their changes are largely
uncontrolled and unpredictable, within the limits of the system.

■ Join paths

Join paths can be random, cyclic, and are interpreted at the time of
the query.

■ No redundancy

Redundant and aggregate data is avoided in order to ensure data
integrity and reduce lockout contention.

■ Relational integrity

The reliability of the data depends on transaction integrity.
Relational integrity checks are too slow and would require much
structural complexity.

■ Predictable SQL queries

To ensure consistent response time, SQL statements are simple,
predefined, and carefully tested. Indexes are optimized for these
statements but are otherwise avoided because they adversely affect
update and insert performance.

■ Recoverability

To ensure against data loss, two-phase commit and rollback mecha-
nisms, continuous transaction logs, and mirrored disk technology
are employed.
3-4 Informix Red Brick Decision Server Administrator’s Guide

Decision-Support Databases
These goals are achieved by database schemas with a high degree of normal-
ization—schemas that contain large numbers of tables connected by complex
join paths. Normalization provides fast transaction response time and a
complex schema that is easily manipulated by the applications that use it, but
difficult to understand by the people who need the data.

Decision-Support Databases
Decision-support systems are designed to allow analysts to extract infor-
mation quickly and easily. The data being analyzed is often historical: daily,
weekly, and yearly results. Examples of decision-support systems include
applications for analysis of sales revenue, marketing information, insurance
claims, and catalog sales. A decision-support database within a single
business can include data from beginning to end: from receipt of raw
material at the manufacturing site, entering orders, tracking invoices, and
monitoring database inventory to final consumer purchase. These systems
are used to manage a business. They provide the information needed for
business analysis and planning.

Decision-support systems have the following characteristics:

■ Understandability

Data structures must be readily understood by users, often requiring
denormalization and precomputed aggregations (summary data).

■ Relatively infrequent changes

Most changes to the database occur in a controlled manner when
data is loaded at regular intervals.

■ Join paths

Join paths are simple, noncyclic, and based on business relations.
They are defined when the database is built.

■ Relational integrity

Relational integrity, necessary to ensure correct results, is built into
the database when the data is loaded or deleted.
Schema Design 3-5

Star Schemas
■ Unpredictable and complex SQL queries

SQL query statements submitted against the database vary consid-
erably and unpredictably from query to query. They can contain
long, complex SELECT statements that make comparisons or require
sequential processing. These queries might reference many
thousands, millions, or even billions of records in a database.

■ Large result sets

Extensive and frequent browsing must be supported.

■ Recoverability

Regular backups, or snapshots, of the static database ensure against
data loss.

Red Brick Decision Server supports all types of schemas, but the goals of a
decision-support system are often achieved by database schemas referred to
as star schemas, which are simple in structure with relatively few tables and
well-defined join paths. This structure, in contrast to the normalized
structure used for transaction-processing databases, provides fast query
response time and a simple schema that is easily understood by the analysts
who use it, even those who are not familiar with database structures.

Two types of star schemas, a simple star schema and a multi-star schema, are
described in the following sections.

Star Schemas
A star schema is composed of fact tables and dimension tables. Fact tables
contain the quantitative or factual data about a business—the information
being queried. This information is often numerical, additive measurements
and can consist of many columns and millions or billions of rows. Dimension
tables are usually smaller and hold descriptive data that reflects the dimen-
sions, or attributes, of a business. SQL queries then use joins between fact and
dimension tables and constraints on the data to return selected information.
3-6 Informix Red Brick Decision Server Administrator’s Guide

Star Schemas
Fact and dimension tables differ from each other only in their use within a
schema. Their physical structure and the SQL syntax used to create the tables
are the same. In a complex schema, a given table can act as a fact table under
some conditions and as a dimension table under others. The way in which a
table is referred to in a query determines whether a table behaves as a fact
table or a dimension table.

Even though they are physically the same type of table, it is important to
understand the difference between fact and dimension tables from a logical
point of view. To demonstrate the difference between fact and dimension
tables, consider how an analyst looks at business performance:

■ A salesperson analyzes revenue by customer, product, market, and
time period.

■ A financial analyst tracks actuals and budgets by line item, product,
and time period.

■ A marketing person reviews shipments by product, market, and
time period.

The facts—what is being analyzed in each case—are revenue, actuals and
budgets, and shipments. These items belong in fact tables. The business
dimensions—the “by” items—are product, market, time period, and line
item. These items belong in dimension tables.

For example, a fact table in a sales database, implemented with a star schema,
might contain the sales revenue for the products of the company from each
customer in each geographic market over a period of time. The dimension
tables in this database define the customers, products, markets, and time
periods used in the fact table.

A well-designed schema provides dimension tables that allow a user to
browse a database to become familiar with the information in it and then to
write queries with constraints so that only the information that satisfies those
constraints is returned from the database.
Schema Design 3-7

Performance of Star Schemas
Performance of Star Schemas
Performance is an important consideration of any schema, particularly with
a decision-support system in which you routinely query large amounts of
data. Red Brick Decision Server supports all schema designs. However, star
schemas tend to perform the best in decision-support applications.

Terminology
The terms fact table and dimension table represent the roles these objects play
in the logical schema. In terms of the physical database, a fact table is a refer-
encing table. That is, it has foreign key references to other tables. A dimension
table is a referenced table. That is, it has a primary key that is a foreign key
reference from one or more tables.

Simple Star Schemas
Any table that references or is referenced by another table must have a
primary key, which is a column or group of columns whose contents uniquely
identify each row. In a simple star schema, the primary key for the fact table
is composed of one or more foreign keys. A foreign key is a column or group
of columns in one table whose values are defined by the primary key in
another table. In Red Brick Decision Server, you can use these foreign keys
and the primary keys in the tables that they reference to build STAR indexes,
which improve data retrieval performance.

When a database is created, the SQL statements used to create the tables must
designate the columns that are to form the primary and foreign keys.
3-8 Informix Red Brick Decision Server Administrator’s Guide

Simple Star Schemas
The following figure illustrates the relationship of the fact and dimension
tables within a simple star schema with a single fact table and three
dimension tables. The fact table has a primary key composed of three foreign
keys, Key1, Key2, and Key3, each of which is the primary key in a dimension
table. Nonkey columns in a fact table are referred to as data columns. In a
dimension table, they are referred to as attributes.

In the figures used to illustrate schemas:

■ The items listed within the box under each table name indicate
columns in the table.

■ Primary key columns are labeled in bold type.

■ Foreign key columns are labeled in italic type.

■ Columns that are part of the primary key and are also foreign keys
are labeled in bold italic type.

■ Foreign key relationships are indicated by lines connecting tables.

Although the primary key value must be unique in each row of a
dimension table, that value can occur multiple times in the foreign
key in the fact table—a many-to-one relationship.

Figure 3-1
Simple Star Schema

Key 1

Key 2

Key 3

Data_column
Data_column
…

Dimension table

Key 1
Attribute
Attribute
…
Attribute

Key 2
Attribute
Attribute
…
Attribute

Fact table

Key 3
Attribute
Attribute
…

Dimension table

Dimension table

Bold column name
indicates primary key.

Lines indicate one-to-many
foreign key relationship.

Bold italic column name indicates
primary key that is a foreign key
reference to another table.
Schema Design 3-9

Simple Star Schemas
The following figure illustrates a sales database designed as a simple star
schema. In the fact table Sales, the primary key is composed of three foreign
keys, Product_id, Period_id, and Market_id, each of which references a
primary key in a dimension table.

Many-to-one relationships exist between the foreign keys in the fact table and
the primary keys they reference in the dimension tables. For example, the
Product table defines the products. Each row in the table represents a distinct
product and has a unique product identifier. That product identifier can
occur multiple times in the Sales table representing sales of that product
during each period and in each market.

Multiple Fact Tables

A star schema can contain multiple fact tables. In some cases, multiple fact
tables exist because they contain unrelated facts; for example, invoices and
sales. In other cases, they exist because they improve performance. For
example, multiple fact tables are often used to hold various levels of aggre-
gated (summary) data, particularly when the amount of aggregation is large;
for example, daily sales, monthly sales, and yearly sales.

Figure 3-2
Sales Database

Product table

Period_id

Product_id

Market_id

Units
Dollars
Discount

Period_id

Period_desc
Quarter
Year

Sales tablePeriod table

Market table

Market_id

Market_desc
District
Region

Product_id

Prod_desc
Brand
Size
3-10 Informix Red Brick Decision Server Administrator’s Guide

Simple Star Schemas
The following figure illustrates the Sales database with an additional fact
table for sales from the previous year.

Figure 3-3
Sales Database with Additional Dimension

Period_id

Product_id

Market_id

Units
Dollars
Discount

Product table

Period_id

Period_desc
Quarter
Year

Sales_CurrentPeriod table

Market table

Product_id

Prod_desc
Brand
Size

Market_id

Market_desc
District
Region

Period_id

Product_id

Market_id

Units
Dollars
Discount

Sales_Previous
Schema Design 3-11

Simple Star Schemas
Another use of a referencing table is to define a many-to-many relationship
between some dimensions of the business. This type of table is often known
as a cross-reference or associative table. For example, in the Sales database,
each product belongs to one or more groups, and each group contains
multiple products, a many-to-many relationship that is modeled by estab-
lishing a referencing table that defines the possible combinations of products
and groups.

Multi-Column Foreign Key

Another way to define a many-to-many relationship is to have a dimension
table with a multi-column primary key that is a foreign key reference from a
fact table. For example, in the Sales database, each product belongs to one or
more groups, and each group contains multiple products, a many-to-many
relationship. This is modeled by defining a multi-column foreign key in the
Sales_Current table that references the Product table, as in the following
example.

Figure 3-4
Sales Database with Cross-Reference Table

Product table

Product_id

Prod_desc
Brand
Size

Period_id

Product_id

Market_id

Units
Dollars
Discount

Period_id

Period_desc
Quarter
Year

Sales_CurrentPeriod table

Market table

Market_id

Market_desc
District
Region

Product/Group table

Product_id

Group_id

Group table

Group_id

Group_desc
3-12 Informix Red Brick Decision Server Administrator’s Guide

Simple Star Schemas
In the preceding figure, the Product_id and Group_id columns are the two-
column primary key of the Product table and are a two-column foreign key
reference from the Sales_Current table.

Outboard Tables

Dimension tables can also contain one or more foreign keys that reference the
primary key in another dimension table. The referenced dimension tables are
sometimes referred to as outboard, outrigger, or secondary dimension tables.
The following figure includes two outboard tables, District and Region,
which define the ID codes used in the Market table.

Figure 3-5
Sales Database with Multi-Column Foreign Key

Product table

Product_id

Group_id

Prod_desc
Brand
Size
Group_desc

Period_id

Product_id

Group_id

Market_id

Units
Dollars
Discount

Period_id

Period_desc
Quarter
Year

Sales_CurrentPeriod table

Market table

Market_id

Market_desc
District
Region
Schema Design 3-13

Multi-Star Schemas
In the preceding figure, the Market table, because it is both a referencing and
referenced table, can behave as a fact (referencing) or dimension (referenced)
table, depending on how it is used in a query.

Multi-Star Schemas
In a simple star schema, the primary key in the fact table is formed by concat-
enating the foreign key columns. In some applications, however, the
concatenated foreign keys might not provide a unique identifier for each row
in the fact table. These applications require a multi-star schema.

In a multi-star schema, the fact table has both a set of foreign keys, which
reference dimension tables, and a primary key, which is composed of one or
more columns that provide a unique identifier for each row. The primary key
and the foreign keys are not identical in a multi-star schema. This fact distin-
guishes a multi-star schema from a single-star schema.

Figure 3-6
Sales Database with Outboard Tables

Product table

Product_id

Prod_desc
Brand
Size

Period_id

Product_id

Market_id

Units
Dollars
Discount

Period_id

Period_desc
Quarter
Year

Sales_CurrentPeriod table

Market table

Market_id

Market_desc
District_id
Region_id

District table

District_id

District_desc

Region table

Region_id

Region_desc
3-14 Informix Red Brick Decision Server Administrator’s Guide

Multi-Star Schemas
The following figure illustrates the relationship of the fact and dimension
tables within a multi-star schema. In the fact table, the foreign keys are Fkey1,
Fkey2, and Fkey3, each of which is the primary key in a dimension table.
Unlike the simple star schema, these columns do not form the primary key in
the fact table. Instead, the two columns Key1 and Key2, which do not
reference any dimension tables, and Fkey1, which does reference a
dimension table, are concatenated to form the primary key. The primary key
can be composed of any combination of foreign key and other columns in a
multi-star schema.

Figure 3-7
Relationship of Fact and Dimension Tables in Multi-Star Schema

Fkey 1

Fkey 2

Fkey 3

Key1

Key2

Data_column
Data_column
…
Data_column

Dimension table

Pkey 1
Attribute
Attribute
…
Attribute

Pkey 2
Attribute
Attribute
…
Attribute

Fact table

Pkey 3
Attribute
Attribute
…
Attribute

Dimension table

Dimension table

Bold column name
indicates primary key.

Lines indicate one-to-many
foreign key relationship.

Bold italic column name indicates
primary key that is a foreign key
reference to another table.

Italic column name indicates
nonprimary foreign key.
Schema Design 3-15

Multi-Star Schemas
The following figure illustrates a retail sales database designed as a multi-star
schema with two outboard tables. The fact table Transact records daily sales
in a rolling seven-day database. The primary key for the fact table consists of
three columns: Date, Receipt, and Line_item. These keys together provide the
unique identifier for each row. The foreign keys are the columns for Store_id
and SKU_id, which reference the Store and SKU (storekeeping unit)
dimension tables. Two outboard tables, Class and Subclass, are referenced by
the SKU dimension table.

In this database schema, analysts can query the transaction table to obtain
information on sales of each item, sales by store or region, sales by date, or
other interesting information.

In a multi-star schema, unlike a simple star schema, the same value for the
concatenated foreign key in the fact table can occur in multiple rows, so the
concatenated foreign key no longer uniquely identifies each row. For
example, in this case the same store (Store_id) might have multiple sales of
the same item (SKU_id) on the same day (Date). Instead, row identification is
based on the primary key(s). Each row is uniquely identified by Date,
Receipt, and Line_item.

Figure 3-8
Multi-Star Schema with Two Outboard Tables

SKU table

SKU_id

Class_id

Subclass_id

Item

Store_id

SKU_id

Date

Receipt

Line_item

Units
Price
Amount

Transact table Store table

Store_id

Store_name
Region
Manager

Subclass_id

Subclass_desc

Subclass table

Class_id

Class_desc

Class table
3-16 Informix Red Brick Decision Server Administrator’s Guide

Views
Views
In some databases, schema design can be simplified by the use of views,
which effectively create a virtual table by selecting a combination of rows and
columns from an existing table or combination of tables. For example, a view
that selects employee names and telephone extensions from an employee
database produces a company phone list but does not include confidential
information such as addresses and salaries. A view that selects transactions
that occur within a given time period avoids the need to constrain queries to
that time period.

Views are useful for a wide variety of purposes, including the following:

■ Increasing security.

■ Simplifying complex tables to give users a view of only what they
need.

■ Simplifying query constraints.

■ Simplifying administrative tasks, such as granting table
authorizations.

■ Hiding administrative changes to users. The database schema
changes design, but the view to the user remains the same.

A view is created with a CREATE VIEW statement.

Additionally, if you are licensed for the Vista option, you can create precom-
puted views so that queries are automatically rewritten to access the
appropriate aggregate table. For information on precomputed views and
automatic query rewriting, refer to the Informix Vista User’s Guide.
Schema Design 3-17

Considerations for Schema Design
Considerations for Schema Design
The schema design for a database affects its usability and performance in
many ways, so it is important to make the initial investment in time and
research to design a database that meets the needs of its users. This section is
not intended to provide a detailed guide to database design, but only to
present some ideas to be considered in designing a database.

A well-designed schema takes into account the following considerations:

■ What are the processes of the business?

Identify the main processes of the business; for example, taking
orders for the product, filling out insurance claims, or tracking
promotions. These processes are different for every business, but
they must be clearly identified and defined in order to create a useful
database. The people who know the processes are the people who
work in the business, and interviews are essential to determine these
processes.

■ What do the users want to accomplish with the database?

The database should reflect the business, both in what it measures
and tracks and in the terminology used to describe the facts and
dimensions of the business. Interviews with managers and users will
reveal what they want to know, how they measure the business,
what criteria they use to make decisions, and what words they use to
describe these things. This information helps determine the contents
of the fact and dimension tables.

■ Where will the data come from?

The data to populate the tables in the database must be complete
enough to be useful and must be valid, consistent data. An analysis
of the proposed input data and its sources will reveal whether the
available data can support the proposed schema.
3-18 Informix Red Brick Decision Server Administrator’s Guide

Considerations for Schema Design
■ What are the dimensions of the business and their attributes that will
be reflected by the dimension tables?

Independent dimensions should be represented by separate tables. If
dimensions are not independent, they can be combined in a single
table. Attributes are usually textual and discrete values; for example,
product descriptions or geographic locations. They are used to form
query constraints and to determine report breaks. The interviews
and data analysis will provide guidance in setting up these tables.

■ Are the dimensions going to change over time?

If a dimension changes frequently, it probably should be measured
as a fact, not stored as a dimension.

■ What facts should be measured?

Facts are usually numerical and continuous values; for example,
revenue or inventory. Facts that are additive can be summed to
produce valid measures in reports. For example, sales for each
month are additive and can be summed to produce year-to-date
totals. Month-end inventory balances, however, are not additive in
the sense that a yearly total of month-end inventory balances is of
dubious value, but a monthly average might be meaningful.

■ Is a family of fact tables needed?

Facts that are measured with different dimensions or use different
timing should be stored in separate tables. For example, a single
database can be used for orders, shipments, and manufacturing.
Although the facts measured in each area of the business are
different, they share some but not all of the same dimensions.

■ What is the granularity of the facts?

Granularity refers to the level of detail of the information stored in
each row of the fact table. Each row should hold the same type of
data. For example, each row could contain daily sales by store by
product or daily line items by store.

Differing data granularities can be handled by using multiple fact
tables (daily, monthly, and yearly tables) or by modifying a single
table so that a “granularity flag” (a column to indicate whether the
data is a daily, monthly, or yearly amount) can be stored along with
the data. Also consider the amounts of data, space, and performance
requirements in deciding how to handle different granularities.
Schema Design 3-19

Schema Building Blocks
■ How will changes be handled, and how important is historical
information?

If change occurs infrequently and/or if historical information is not
very important, dimension tables can be modified to reflect only the
new reality without any loss of useful data. However, if previous
history is important, dimension tables can be modified to reflect both
the old and new conditions. If a dimension changes frequently,
perhaps it should be considered time dependent and include a time-
based attribute; for example, month, quarter, or year.

Schema Building Blocks
The following figures illustrate some common schema examples. Tables
named Fact or Factx represent fact (referencing) tables. The other tables
represent dimension (referenced) tables. The following figures apply to both
single-star and multi-star schemas.

A schema can consist of a single dimension table.

A schema can be a star schema with one fact table and one dimension table.

Figure 3-9
Single Dimension

Table

Figure 3-10
Star Schema with

One Dimension
Table

Market

…

Market

…

Fact

…

3-20 Informix Red Brick Decision Server Administrator’s Guide

Schema Building Blocks
A schema can be a star schema with one fact table and several dimension
tables.

A schema can be a multiple star schema, with a family of fact tables that share
some, but not necessarily all, dimension tables.

Figure 3-11
Star Schema with

Several Dimension
Tables

Fact

…

Market

…

Product

…

Period

…

Figure 3-12
Star Schema with

Several Fact Tables
Fact1

…

Fact1a

…

Product

…

Market

…

Period

…

Fact2

…

SalesPerson

…

Schema Design 3-21

Schema Building Blocks
A schema can be an extended star schema with dimension tables that
reference other dimension tables (outboard tables).

A schema can be a star schema with a fact table that contains multiple foreign
keys that reference single dimension table(s).

Figure 3-13
Star Schema with

Outboard Tables
Fact1

…

Product

…

Market

…

Period

…

Country

…

Type

…

Figure 3-14
Star Schema with

Multiple Foreign
Keys

Fact1

…

Product

…

Market

…

Period

…

3-22 Informix Red Brick Decision Server Administrator’s Guide

Example: Salad Dressing Database
Example: Salad Dressing Database
This example illustrates how the schema design affects both usability and
usefulness of the database.

This database tracks the sales of salad dressing products in supermarkets at
weekly intervals over a four-year period and is a typical consumer-goods
marketing database. The salad dressing product category contains 14,000
items at the universal product code (UPC) level. Data is summarized for each
of 120 geographic areas (markets) in the U.S. and for each of 208 weekly time
periods spanning four years.

The salad dressing database has one fact table, Sales, and three dimension
tables: Product, Week, and Market, as illustrated in the following figure.

Each record in the Sales fact table contains a field for each of the three dimen-
sions: Product, Period, and Market. The columns in the Sales table containing
these fields are the foreign keys whose concatenated values give each row in
the Sales table a unique identifier. Sales also contains seven additional fields
that contain values for measures of interest to market analysts.

Each dimension table describes a business dimension and contains one
primary key and some attribute columns for that dimension.

Figure 3-15
Salad Dressing

Database Example

Product_id

Period_id

Market_id

Units
Dollars
Discount
Selling_price
Large_ads
Medium_ads
Small_ads

Sales table
(3,800,000 records)

Period table
(208 records)

Period_id

Period_desc
Quarter
Fiscal_year
Calendar_year
Agg_level

Product_id

Description
Brand
Manufacturer
Pack
Class
Flavor
Size

Product table
(14,000 records)

Market table
(120 records)

Market_id

Market_desc
District
Region
Schema Design 3-23

Analyzing Your Schema
Analyzing Your Schema
More often than not, database administrators are presented with an existing
database rather than designing one from scratch. To analyze and improve an
existing schema, consider the range of values of dimension tables, write
queries to perform joins between fact and dimension tables, and determine
which attributes to include.

Browsing the Dimension Tables
A convenient way to find the range of values for a specific dimension is to
query the dimension table for that dimension. For example, to see what the
markets are for the sales data, a user can enter the following:

select market_desc from market;

which displays a list of all the markets, 120 in this case. Similar queries on the
Product and Week tables provide the user with lists of the products and
periods covered in the Sales table.

Wildcard expressions can be used to narrow the browse list to items that
approximate those of interest. For example, if the user is interested in ranch-
style dressings, a wildcard expression incorporating “ranch” in the SELECT
statement limits the browse list from the product table to those products with
“ranch” in the product description instead of 14,000 items.

Browsing through the dimension tables is quicker than issuing a SELECT
DISTINCT statement on a fact table, especially if the fact table contains
millions of rows of data. Having tables of data that define each dimension of
the star schema makes this browsing activity possible. Users can browse the
dimensions of the database using the dimension tables to become familiar
with the data contents.
3-24 Informix Red Brick Decision Server Administrator’s Guide

Querying the Fact Table
Querying the Fact Table
After creating browse lists to determine which markets, products, and time
periods are covered in the database, the user looks over these lists to find the
markets, products, and time periods of interest. The browse lists return the
exact descriptions and spellings, making it easier to write the query
constraints correctly. You can then write queries that perform joins between
the fact and dimension tables to link the additive data from the fact table to
the descriptive data from the dimension table(s).

Determining Which Attributes to Include
Nonkey columns in a dimension table are referred to as attributes. To see how
attributes are used, consider the Product table for the salad dressing
database. It has 14,000 items that are identified by their Universal Product
Code (UPC), which provides the primary key (Product_id). This identifier
allows a user to retrieve a unique row. Usually, however, the user does not
want data at the UPC level but is interested in higher-level categories such as
brand or manufacturer. Attributes permit commonly accessed subsets of an
entire group to be differentiated.

For example, the brand attribute allows the 14,000 salad dressing products to
be differentiated by brand so that a user can select only products with a
specific brand name. Another attribute allows those same 14,000 products to
be differentiated by manufacturer. A user analyzing the salad dressings uses
the following attributes to select the diet ranch-type salad dressings in 12-
ounce bottles from major manufacturers.

Attribute Possible Values

Class diet, regular

Flavor ranch, bleu cheese, thousand island

Size 12 ounces, 8 ounces

Manufacturer Great Foods, Major Mills, Crafty Cuisine
Schema Design 3-25

Determining Which Attributes to Include
A well-designed schema includes attributes that reflect the users’ potential
areas of interest and attributes that can be used for aggregations as well as for
selective constraints and report breaks. In addition to the attributes shown in
the previous figure, the Product table could be expanded to include a wider
range of attributes:

Other types of tables might have only a few attributes. For example, the
period dimension for a financial application might need only three attributes:

■ Period ID (key field)

■ Beginning date

■ Ending date

An aggregation level in the Period table can be used to distinguish aggre-
gated data from detail data when each type of data is stored in a single table.
However, if aggregate and detail data are stored in a single table, each query
against that table must constrain on the aggregation level to avoid double-
counting.

Attributes do not need to be hierarchical, although hierarchy might be
required in some cases, as in a general ledger chart of accounts. Multiple
hierarchies can also be represented in a single table. For example, in a table
that records information with a geographic base, separate geographic hierar-
chies —physical, sales organization, customer organization—can be
recorded in the same table, and any of these attributes can form the basis for
constraints.

UPC (key field) Viscosity
Distribution Flavor
Manufacturer Size
Brand Group Special Package
Brand Promotion
Class
3-26 Informix Red Brick Decision Server Administrator’s Guide

Schema Examples
An attribute can be defined to permit missing values in cases where an
attribute does not apply to a specific item or its value is unknown.

A schema design that contains complete, consistent, and accurate attribute
fields helps users write queries that they intuitively understand and reduces
the support burden on the organization responsible for database
management.

Schema Examples
The following examples illustrate common schema designs based on the
design considerations that are essential to usability and performance.

Reservation System Database
This example illustrates a multi-star schema, in which the primary and
foreign keys are not composed of the same set of columns. This design also
contains a family of fact tables: a Bookings table, an Actuals table, and a
Promo_Schedule table.

This database tracks reservations (bookings) and actual accommodations
rented for a chain of hotels, as well as various promotions. It also maintains
information about customers, promotions, and each hotel in the chain.
Schema Design 3-27

Reservation System Database
In cases where payment is received in advance (for example, reservation
deposits, cable TV subscriptions, automobile insurance), in accordance with
proper accounting procedures, transactions must be made to reflect income
as it is earned, not when it is received, and the database must be designed to
accommodate such transactions.

Figure 3-16
Schema for Reservation System

Chkout_date

Facility_id

Cust_id

Room_type_id

Confirm_#

Promo_id
Chkin_date
#_nights
#_party
Actual_room_rate
Std_room_rate
…

Actuals table

Facility_id

Hotel_name
Num_rooms
City
State
Type
IATA_city_code
…

Facility table

Chkout_date

Facility_id

Cust_id

Room_type_id

Confirm_#

Promo_id

Chkin_date

Arrival_code
#_nights
#_party
Room_rate
…

Bookings table

Cust_id

Cust_name
Street_add
City
State
Zip
Cust_type
Point_bal
…

Frequent_Stayers table

Perkey

Date_long
Day_of_wk
Fiscal_qtr
…

Period table
(and synonym)

Room_type_id

Bed_type
Smoking_status
Room_desc
Patio_flag

Room table

Promo_id

Name
Type
Description

Promo_Type table
Start_date

Facility_id

Promo_id

End_date

Promo_Schedule table
3-28 Informix Red Brick Decision Server Administrator’s Guide

Investment Database
Investment Database
This example illustrates a schema to handle data aggregations. In this case,
daily data is stored in one table and aggregated data (for example, monthly,
yearly) in another, rather than combining both levels of aggregation in one
table. The ratio of aggregated data to nonaggregated data and knowledge of
the expected queries can help determine whether to combine various aggre-
gation levels in a single database or use multiple tables. If aggregated and
nonaggregated data is stored in the same table, each query must specify the
level of aggregation as a constraint.

Although separate tables for aggregated data require more disk space, they
can sometimes provide performance benefits. Furthermore, the aggregates
are usually relatively small compared with the unaggregated fact table. In
some situations, this can be a worthwhile space-for-performance tradeoff.

For example, consider a fact table containing 100 gigabytes of data. If you
build three aggregates, the first containing 5 gigabytes of data, the second
containing 100 megabytes of data, and the third containing 2 megabytes of
data, you are only adding approximately 5 percent of disk space to your fact
table. In return, you can have queries that involve a join of a dimension table
to the fact table, and they might only need to join the 2-megabyte fact table
instead of the 100-gigabyte fact table. Depending on the complexity of the
query, it can potentially run thousands of times faster, returning results in
seconds rather than minutes, hours, or even days. However, every situation
is different, and aggregated data is not the right approach in every case.

If you are licensed for the Vista option, you can use existing aggregate tables
to create precomputed views. The precomputed views allow the system to
automatically rewrite queries submitted against a detail table to access an
aggregate table. For detailed information about this option, refer to the
Informix Vista User’s Guide.
Schema Design 3-29

Investment Database
3-30 Informix Red Brick Decision Server Administrator’s Guide

The investment database shown in the following figure tracks sales of
investment funds on a daily and monthly basis. It also maintains information
about the client organizations, the investment funds, and various trading
programs.

Figure 3-17
Schema for Investment Database

Orgkey

Organization
Org_type
Parent_name
Market
Segment
Region
Contract
System

Client Org table

Progkey

Prog_name

Program table

Saleskey

Sales_person
Sales_type
Organization
Market
Segment
Region
Level

Sales Person table

Perkey

Orgkey

Fundkey

Progkey

Closing_price
#_transactions
Month_to_date_sales
Ending_assets
Measure_1
Measure_2
…

Daily table

Perkey

Orgkey

Fundkey

Progkey

Monthly_sales
#_transactions
Month_end_assets
Month_to_date_sales
Year_to_date_sales
Ending_assets
Average_assets
Measure_1
Measure_2
…

Monthly table

P_line_key

Product_line
…

Product Line table

Fundkey

Progkey

Fund_name
Discipline
Basis_points_1
Basis_points_2
…

Security table

Perkey

Fundkey

Saleskey

To_dos
Dollar_sales
Profitability
#_of_contacts
Measure_1
Measure_2
…

Contact Mgmt table

Perkey

Date_long
Day_of_wk
Fiscal_qtr
B_days_mo
…

Period table

Health Insurance Database
Health Insurance Database
This example illustrates a star schema used for claims analysis by a health
care insurance company. This database records policy sales and claims and
maintains records of customers, their policies, and claims against those
policies.

Figure 3-18
Schema for Health Insurance Company

Policykey

Policy type
Agent
Conditions

Policy table

Transactkey

Transaction_desc

Transaction table

Policy_holderkey

Name
Address
City
State

Policy_holder table

Policykey

Policy_holderkey

Perkey (start date)

Transactkey

Premium_dollars
Coverage_period
Coverage_limit

Policy Sales table

Perkey

Claimkey

Transactkey

Claim_dollars

Claims table

Perkey

Month
Year
Fiscal_period

Period table

Claimkey

Typekey
Claimantkey
ProvID
ProcCode

Claim_Desc table

Typekey

Type_desc

Claim Type table

Claimantkey

Name
Address
City
State

Claimant table
Schema Design 3-31

Health Insurance Database
A second example in the health care field illustrates a schema that tracks
member claims and authorizations, with many dimensions that include
patients and provider information, diagnoses, services performed, and other
dimensions of the business. This schema has two fact tables: Claim, a star,
and Authorization, a multi-star with a single-column primary key and
multiple foreign keys that are not part of the primary key. Any combination
of foreign key values can be present multiple times in the Authorization
table. The primary key values uniquely identify each row. Both tables have
many foreign keys that reference the numerous dimension tables.

In this figure, the primary keys for each table are in boldface, and only the
primary keys and foreign keys are labeled. Other attributes within the tables
are not shown. Because of the many dimension tables, the many-to-one lines
that match the foreign keys in the fact table with the primary keys in the
dimension tables are not drawn.
3-32 Informix Red Brick Decision Server Administrator’s Guide

Health Insurance Database
Figure 3-19
Multi-Star Schema for Health Insurance Company with Multiple Dimension Tables

AdmitType

AdmitType
… AdmitDate

AdDate
… DischargeDate

DisDate
…

ServiceType

ServCode
… ServiceDate

DateCode
…

SPICode
…

ServCat
…

ServiceCategory

ServicePlace

AuthNo
MemID
MemGrp
DiagCode
ProvID
AdDate
DisDate
PCPID
ProcCode
ServCat

Authorization

MemID
MemGrp
DiagCode
ProcCode
PCPID
PCPRisk
OccCode
DateCode
ProvID
ProvRisk
ProvVendor
ServCode
SPICode
ProvSpec
ServCat

Claim tableMembers

MemID
… MemGroups

MemGrp
…

DiagCode
…

ProcCode
…

Procedure

Diagnosis

OccCode
…

Occupation

Provider

ProvID
… ProviderRisk

ProvRisk
…

ProvVendor
…

ProvSpec
…

ProviderSpecialty

ProviderVendor

PCPID
…

PriCareProv

PCPRisk
…

PCPRisk

PCPVend
…

PCPVendor
Schema Design 3-33

4
Chapter
Planning a Database
Implementation
In This Chapter . 4-3

Organizing Data into Databases 4-3

Determining When to Create Additional Indexes 4-4
STAR Indexes 4-6
B-TREE Indexes 4-9
TARGET Indexes 4-10

Weakly Selective Constraints 4-10
Choosing the Right Domain Size 4-11
Knowing Your Data 4-11

No Indexes . 4-12

Planning for TARGETjoin Processing 4-13
STARjoin Versus TARGETjoin. 4-13
Administration Considerations for TARGETjoin

Processing 4-14
Cost Versus Performance 4-15
Load Operations 4-15
Large Dimension Tables 4-16
Multi-Column Foreign Keys 4-17
Parallel TARGETjoin Queries 4-18

TARGET Index DOMAIN Clause 4-19

Planning Disk Storage Organization 4-20
Estimating the Size of User Tables 4-21
Estimating the Size of Indexes. 4-23

Index Fill Factors 4-23
STAR Indexes 4-26
B-TREE Indexes 4-26
TARGET Indexes 4-27

4-2 Infor
Example: Calculating Table, Index, and System Table Sizes 4-27
Fact1 Table and Its Indexes 4-28
Market Table and Its Indexes 4-29
Product Table and Its Indexes 4-31

Estimating the Size of System Tables 4-33
Size: System Tables 4-33

Total Space for User Tables, Indexes, and System Tables 4-34

Estimating Temporary Space Requirements 4-35
How Optimized Index-Building Operations Use

Temporary Space 4-36
Estimating Temporary Space Values for Index-Building

Operations 4-37
DIRECTORY Location Values 4-37
THRESHOLD Value 4-38
MAXSPILLSIZE Value 4-39
Online Index-Building Operations 4-39
Offline Index-Building Operations 4-40

Temporary Space Requirements for TARGET Indexes 4-42
How Query Operations Use Temporary Space 4-43
Estimating a QUERY_MEMORY_LIMIT Value for

Queries 4-43
Estimating a MAXSPILLSIZE Value for Queries 4-44

Planning for Segmented Storage 4-45
 Determining When to Use Default and Named

Segments 4-46

Considerations for Growing Tables 4-48
Effect of Table Growth on STAR Indexes 4-48
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
This chapter describes the planning that must be done before you implement
a Red Brick Decision Server database and includes the following sections:

■ Organizing Data into Databases

■ Determining When to Create Additional Indexes

■ Planning for TARGETjoin Processing

■ Planning Disk Storage Organization

■ Estimating the Size of User Tables

■ Estimating Temporary Space Requirements

■ Planning for Segmented Storage

■ Considerations for Growing Tables

Organizing Data into Databases
In planning for a new Red Brick Decision Server installation, the database
administrator must decide how user tables are to be organized into databases
and, therefore, how many databases are to be created. A single database can
contain many unrelated collections of user tables, so in theory, every table in
a large and complex installation can be created within a single database. In
practice, however, it is usually desirable to separate distinct groups of user
tables into separate databases. Separating tables into different databases
eases administration; provides isolation for security, backup, and recovery;
and makes the database appear less complex to end users.
Planning a Database Implementation 4-3

Determining When to Create Additional Indexes
In general, tables supporting a single business application should be located
in a single database. This organization allows user-access permissions and
macro definitions to be shared by the entire application. Conversely, tables
supporting distinct business applications should be separated into distinct
databases.

The first step in planning a new database is to identify and design the tables
to be included in the database, specify their contents, and define the relation-
ships among them. This process is discussed in Chapter 3, “Schema Design.”

Determining When to Create Additional Indexes
In a Red Brick Decision Server database, a B-TREE index is automatically
created on the primary key of a table during table creation. To improve query
performance, create additional indexes. The improved query performance
must be balanced against the additional storage space for each index and the
additional time to build or update it during each load procedure. In general,
if space is available and load performance is not an issue, index any column
that will be constrained in queries.

You can drop any index at any time. If you drop a primary key index,
however, any INSERT, UPDATE, or DELETE operation on that table might
result in referential integrity violations unless you build either another B-
TREE index on the primary key or a STAR index.

If your database contains any outboard tables, create a B-TREE index or a
STAR index on each foreign key of each table referencing an outboard table.

Creating additional indexes can have a large impact on query performance.
For information about how Red Brick Decision Server chooses the indexes to
use in a query and the algorithms used to join tables, refer to “Understanding
Query Processing” on page 10-43.
4-4 Informix Red Brick Decision Server Administrator’s Guide

Determining When to Create Additional Indexes
Consider the following guidelines about creating additional indexes:

■ If your schema design is a star schema in which you have a central
referencing (fact) table with primary key-foreign key references to
one or more referenced (dimension) tables, create one or more STAR
indexes. If queries against a fact table constrain only the trailing
foreign key column of an existing STAR index, or if queries constrain
the trailing columns more tightly than the leading columns, create an
additional STAR index naming the more tightly constrained columns
as the leading columns in the index key to improve query perfor-
mance. STAR indexes are usually more useful when they cover more
columns. A single-column STAR index is not a very useful index.

■ If your schema design is a star schema, if you have many referenced
(dimension) tables, and if the STAR indexes you have created are not
providing optimal performance for all of your queries, you can
create TARGET indexes on the foreign key columns of the referencing
(fact) table to enable TARGETjoin processing. For more information
about TARGETjoin processing, refer to “Planning for TARGETjoin
Processing” on page 4-13 and to Chapter 10, “Tuning a Warehouse
for Performance.”

■ Queries against multiple fact tables (fact-to-fact table joins) place two
specific requirements on STAR indexes:

❑ The fact tables must each have at least one foreign key reference
to at least one common dimension table.

❑ All the shared foreign keys must appear in the same relative
order in each STAR index.

Create additional STAR indexes to satisfy these requirements in cases
where queries against multiple fact tables are needed. If these condi-
tions are not satisfied, the query proceeds using a different join
algorithm and might not perform as well.

■ Define B-TREE indexes on each UNIQUE column to enforce the
uniqueness constraint.
Planning a Database Implementation 4-5

STAR Indexes
■ Queries against a table constrain columns other than the primary
key:

❑ Create a B-TREE index on each column that will be constrained to
improve query performance unless that column contains a large
number (20 percent or more) of duplicate values. (For example,
do not create a B-TREE index on a column that has only a few
possible values, such as YES, NO, or NA.)

❑ Create a TARGET index on any columns that contain a large
number of duplicate values.

Tip: In all cases where a dimension table contains a foreign key (that is, it references
an outboard table), create a B-TREE or STAR index on that foreign key.

Each of these cases is illustrated in the examples that follow.

STAR Indexes
Red Brick Decision Server uses STAR indexes to greatly improve performance
on queries involving tables that have foreign keys that are the primary keys
of another table. A STAR index uses STARjoin technology, a proprietary
method of joining tables with a primary key/foreign key relationship in the
schema design. When you have such schemas, known as star schemas, you
must create one or more STAR indexes to take advantage of this technology.

If you have multiple STAR indexes, the order of the foreign key constraints in
a query determines which index is used. Red Brick Decision Server uses the
STAR index built on columns with the closest match to the query constraints.
4-6 Informix Red Brick Decision Server Administrator’s Guide

STAR Indexes
Example

This example illustrates a case in which the leading foreign key columns of a
STAR index are not constrained. An additional STAR index on the constrained
columns will improve performance.

A fact table is defined as follows:

create table table1 (
pk int not null unique,
fk1 int not null,
fk2 char (3),
fk3 char(2),
fk4 char(6),
fk5 int,
col1 char(8),
col2 char(10),
constraint table1_pkc1 primary key (pk, fk1, fk2)
constraint tabled1_fkc3 foreign key (fk3)

references tabled1 (pk),
constraint tabled2_fkc2 foreign key (fk2)

references tabled2 (pk),
constraint tabled3_fkc1 foreign key (fk1)

references tabled3 (pk),
constraint tabled4_fkc4 foreign key (fk4)

references tabled4 (pk),
constraint tabled5_fkc5 foreign key (fk5)

references tabled5 (pk)
) ;

The primary key B-TREE index is automatically built on columns Pk, Fk1, and
Fk2. You can build a STAR index on the foreign key columns Fk3, Fk2, Fk1,
Fk4, and Fk5, in that order, as follows:

create star index star1 on table1
(tabled1_fkc3, tabled2_fkc2, tabled3_fkc1, tabled4_fkc4,

tabled5_fkc5) ;

This index provides good performance on queries that constrain on, for
example, Fk3, Fk2, and Fk1. For queries that constrain on Fk4 and Fk5, you
can improve the performance by creating an additional STAR index on
columns Fk4 and Fk5, as follows:

dbspcreate star index star2 on table1 (tabled4_fkc4,
tabled5_fkc5) ;
Planning a Database Implementation 4-7

STAR Indexes
Example

This example illustrates a case in which a STAR index is used to perform an
efficient join between two fact tables (fact-to-fact table joins). In this case,
assume you built a STAR index that includes all the foreign keys, in the order
they are specified in the CREATE TABLE statement, for each table. This means
the foreign key columns that make up the STAR indexes are not in the same
order.

Two tables contain the following FOREIGN KEY clauses. The shared foreign
key references are in bold typeface:

create table fact1 (
...
foreign key (fk1) references dimension1 (pk),
foreign key (fk2) references dimension2 (pk),
foreign key (fk3) references dimension3 (pk),
foreign key (fk4) references dimension4 (pk))

create table fact2 (
...
foreign key (fky1) references dimensionx (pk),
foreign key (fky2) references dimension3 (pk),
foreign key (fky3) references dimension2 (pk),
foreign key (fky4) references dimension1 (pk),
foreign key (fky5) references dimensiony (pk)) ;

The foreign key clauses that are common to both tables (the ones that
reference tables Dimension1, Dimension2, and Dimension3) are not in the
same order in both tables. Because the STAR indexes you already built are in
the foreign key order specified in the CREATE TABLE statement, they do not
have their keys in the same order, which is a requirement for joins between
fact tables.

An analyst wants to write queries that join tables Fact1 and Fact2 and
constrain on the tables Dimension1 and Dimension2. A STAR index on the
Fact2 table defined as follows provides an index with the required key
composition and order:

create star index star2 on fact2 (fky4, fky3, fky2) ;
4-8 Informix Red Brick Decision Server Administrator’s Guide

B-TREE Indexes
The requirements listed on page 4-5 for STAR indexes used for fact-to-fact
joins are met. All foreign keys shared by the fact tables are present in a STAR
index for each table (the STAR index on all the foreign keys for Fact1 and Star2
on Fact2), and the shared keys are in the same relative order (Dimension1,
Dimension2, Dimension3). If the analyst’s queries constrain on only the
shared dimension tables, the index Star2 is sufficient.

If the analyst wants to constrain table Fact2 on its nonshared foreign key Fk5,
which references the table Dimensiony, that column must also be included in
a STAR index.

create star index star3 on fact2 (fky4, fky3, fky5, fky2) ;

Relative but not identical order of the shared foreign keys is required. In
defining key order, also consider frequency and selectiveness of constraints.

B-TREE Indexes
You can create a B-TREE index on any column or set of columns in a table. If
you have a join query and no STAR index or TARGET index is available, but a
B-TREE index is available, the B-TREE index is used, causing a nested loop
join.

Tip: If you create a multi-column B-TREE index, all columns included in the index
must be declared NOT NULL, or the index creation terminates with an error.

Example

This example illustrates a case where a nonprimary key column in a table is
constrained. An additional index improves performance.

A table named Product with an outboard table named Personality is defined
as follows:

create table product (
prodkey integer not null,
product char (15),
distributor char (15),
beankey integer not null,
primary key (prodkey),
foreign key (beankey) references personality (beankey)) ;
Planning a Database Implementation 4-9

TARGET Indexes
An index is created automatically on Prodkey, the primary key column in the
Product table (and also on the Beankey column of the Personality table,
which is the primary key of that table). If queries constrain any of the other
columns in the Product table, creating B-TREE indexes on those columns
improves performance. For example, if you have queries that constrain on
the Distributor column, you can create a B-TREE index as follows:

create index on product (distributor) ;

TARGET Indexes
There are two different applications for TARGET indexes:

■ TARGET indexes on columns of referenced (dimension) tables that
are constrained in queries.

■ TARGET indexes on the foreign key columns of a referencing (fact)
table to enable TARGETjoin processing.

If you use queries that contain multiple weakly selective constraints, creating
TARGET indexes on the columns subject to these constraints can improve
performance. Performance improvements are two-fold. The queries run
faster and require less memory to process.

For information about using TARGET indexes to enable TARGETjoin query
processing, refer to “Planning for TARGETjoin Processing” on page 4-13 and
to Chapter 10, “Tuning a Warehouse for Performance.”

Weakly Selective Constraints

The term weakly selective describes a constraint that retrieves many records
from a table. Weak selectivity typically occurs when a column in a very large
table has a small domain (set of possible values). For example, the domain of
a Gender column in an Employees table consists of only two possible values
for every row—Male or Female. Constraints on that column are weakly
selective. They usually retrieve a very large list of rows.

Much larger domains might also give rise to weak selectivity. For example,
an Age column in the same table would have a much larger domain than a
Gender column, but constraints on age might still be weakly selective,
especially if the data is not uniformly spread across the domain or if the
constraints specify values that dominate the domain.
4-10 Informix Red Brick Decision Server Administrator’s Guide

TARGET Indexes
Choosing the Right Domain Size

When you create a TARGET index on a particular column and you know the
data in the column you are indexing, you can specify the domain size—
LARGE, MEDIUM, or SMALL—in the DOMAIN clause of the CREATE INDEX
statement. Based on your choice, Red Brick Decision Server selects the appro-
priate storage method, or representation, for the TARGET index information.

If you do not specify the domain size when you create the TARGET index, Red
Brick Decision Server dynamically selects the storage representation for each
distinct key value (each different value in the column) of the TARGET index
column. The storage representation could be different for different key
values, depending on the number of occurrences of each distinct key value in
the indexed column. This method works well when the data is not uniform
and when you are not sure of the data in the column you are indexing.

For more information on the DOMAIN clause of the CREATE INDEX
statement, refer to the SQL Reference Guide.

Knowing Your Data

If you know what your data is like, you can make a good choice of what type
of TARGET index to create. If the data in a column is uniformly distributed
and you have a good idea of the domain size, you can use the DOMAIN clause
when creating your TARGET index. If, however, the data is skewed and/or
you do not have a good idea of the domain size, you can create a TARGET
index without specifying the DOMAIN clause. This TARGET index has a
“hybrid” representation that dynamically chooses its domain size, based on
the data.

An advantage of this “hybrid” type of TARGET index is that you do not need
to choose a domain size, which is useful when you do not know what the
data in the column will be like over time. A disadvantage, however, is that
you have less control over how the index grows with the data. It is more
difficult to estimate how large the index might grow over time.
Planning a Database Implementation 4-11

No Indexes
Example

Suppose you have a 10,000,000 row Customer table with the columns
Cust_key, Last_name, First_name, Street, City, State, Zip_code, and Region,
where Region has a value between 1 and 250, each number representing a
particular sales representative’s territory. You can create a TARGET index to
improve query performance on queries constraining against the Region
column as follows.

create target index customer_region_idx on customer (region)
domain size medium;

No Indexes
If you join tables that do not have indexes covering the join path and the join
is an equijoin, Red Brick Decision Server performs the join using a hybrid
hash join algorithm. Hash joins are efficient for joining tables that are so
different in size that the smaller table can fit into memory.

If the join is not an equijoin and no indexes are available, it can be performed
as a cross join. The cross join finds the Cartesian product of the tables being
joined and must be enabled using the SET CROSS JOIN ON statement. For
more information on the SET CROSS JOIN statement, refer to the SQL Reference
Guide.
4-12 Informix Red Brick Decision Server Administrator’s Guide

Planning for TARGETjoin Processing
Planning for TARGETjoin Processing
Red Brick Decision Server includes a family of join methods, one of which is
the TARGETjoin bit-mapped join. TARGETjoin processing works on star
schemas or any schema that has primary key/foreign key relationships. It is
a complementary join method to STARjoin technology. It uses TARGET
indexes on the foreign keys of a fact table (B-TREE indexes on multi-column
foreign keys) to join the table to the tables referenced by the foreign keys. This
section explains how TARGETjoin processing works and provides infor-
mation on how to use and administer a database to take advantage of this
new join method. The following topics are included:

■ STARjoin Versus TARGETjoin

■ Administration Considerations for TARGETjoin Processing

■ TARGET Index DOMAIN Clause

For more information about using TARGETjoin query processing to improve
performance, refer to “TARGETjoin Query Processing” on page 10-59.

STARjoin Versus TARGETjoin
Red Brick Decision Server uses STAR indexes to provide fast joins between a
fact table and the dimension tables it references with foreign key/primary
key relationships. STARjoin processing also supports joins between two or
more fact tables with related dimension tables. STAR indexes work well on
queries that join fact and dimension tables, particularly when one or more of
the leading keys of the STAR index are constrained in the query. When one or
more of the leading keys of a STAR index are not constrained in a query, the
performance of a STARjoin query is generally not as good as when they are
constrained. As the constraining columns become separated by more and
more columns from the leading key in the STAR index, the ability of the index
to enhance the performance of the query diminishes. One alternative is to
create additional STAR indexes with different key orders or with different
keys. TARGETjoin processing offers another alternative.
Planning a Database Implementation 4-13

Administration Considerations for TARGETjoin Processing
When you submit a query to Red Brick Decision Server, the server first
generates a plan for execution based on the performance of each join method
for the indexes available. The server chooses between STARjoin, TARGETjoin,
B-TREE 1-1 match, hybrid hash join, and cross join. The actual query path is
chosen at query execution time. The server chooses a TARGETjoin query plan
when a good STARjoin query plan is not available and when the TARGETjoin
operation will perform better than a table scan.

TARGETjoin processing is not a replacement for STARjoin processing. They
are complementary technologies. All other things being equal, with a good
STARindex (an index that contains the columns constrained in the query as
leading keys in the STARindex), STARjoin processing is a faster join method
than TARGETjoin processing. However, with a STARindex where the leading
keys are not constrained in the query, TARGETjoin processing likely provides
better performance.

Administration Considerations for TARGETjoin Processing
When you create TARGET indexes on fact table foreign keys (B-TREE indexes
on multi-column foreign keys) to enable TARGETjoin processing, you must
consider the administrative costs associated with maintaining these new
indexes. If your database is static—that is, it does not change through incre-
mental INSERT, UPDATE, DELETE, or LOAD DATA operations— the cost of the
indexes is the amount of extra disk space they require. The amount of disk
space required is proportional to the number of rows in your fact table. A
table with 100 million rows has much smaller indexes than a table with
4 billion rows. Use the dbsize tool to estimate index size.

If your database is dynamic, for instance if you do incremental INSERT,
UPDATE, DELETE, or LOAD DATA operations, there is an additional cost in
time to update these indexes while you change the database. Consider these
costs and plan for them, putting the appropriate administrative procedures
in place. Every implementation is unique, but this section discusses some
general issues to consider for all databases.
4-14 Informix Red Brick Decision Server Administrator’s Guide

Administration Considerations for TARGETjoin Processing
Cost Versus Performance

Performance is the primary reason for using TARGETjoin processing. If your
system is performing well in all situations already, you probably do not need
to incur the extra cost of building the indexes on your foreign keys. STARjoin
processing is extremely effective on many schemas. You simply might not
need TARGETjoin processing. But if you have some queries that constrain on
columns that are not among the leading keys of your STARindex(es), consider
adding the indexes to enable TARGETjoin processing.

Two types of costs are involved in creating the indexes to enable TARGETjoin
processing:

■ Increased disk space to store the indexes

■ Increased load times to update the indexes

Load Operations

When the TMU loads data into a database that contains TARGET or B-TREE
indexes on the foreign keys of the fact table, time is required to update these
indexes during the load. Depending on the time available for loading the
data (the load window), consider dropping these TARGET and B-TREE
indexes before the load and then re-creating them after the load. The advan-
tages of this approach are as follows:

■ Faster load times because the TARGET and B-TREE indexes do not
need to be built for the load operation to complete.

■ Increased database availability because the database is available for
querying while the TARGET and B-TREE indexes are building.
Queries do not use TARGETjoin processing until the appropriate
indexes become available. When the indexes become available, Red
Brick Decision Server automatically considers them when compiling
queries. The net gain is less downtime for the database for load
operations although the foreign key indexes are not immediately
availability.

Consider the following two cases regarding loading data:

■ Load operations that roll off old data segments and roll on new ones

■ Load operations that do not change the table structure
Planning a Database Implementation 4-15

Administration Considerations for TARGETjoin Processing
Load Operations That Roll Segments Off and On

If your database is segmented by time and you routinely roll off old data and
roll on new data by using ALTER SEGMENT...DETACH OVERRIDE FULLINDEX-
CHECK and ALTER SEGMENT...ATTACH operations, dropping your foreign
key indexes before you load and re-creating them after you load might be a
good strategy. Because this type of load changes the structure of the table,
thus invalidating any indexes that are not segmented in the same way as the
data, the TARGET and B-TREE indexes would require a REORG operation. The
extra time required to load and update the indexes and then to perform a
REORG operation might be more costly than to drop the foreign key indexes,
perform the load operation, and then re-create the indexes.

Incremental Loads That Do Not Change the Table Structure

An INSERT, UPDATE, DELETE, or LOAD operation that does not change the
structure of any tables updates all of the indexes, including any
TARGET indexes, during the operation. These operations do not require a
REORG operation after the data is loaded. This is efficient in the following
cases:

■ There are relatively small INSERT, UPDATE, DELETE, or LOAD
operations.

■ Databases are designed for growth by allocating segments for future
loads when the tables are created.

■ Database updates are infrequent.

The cost of these incremental changes grows as database size grows. If your
database has millions of rows, these operations tend to be much less costly
than if your database has billions of rows. In all cases, carefully evaluate the
cost of these operations with all of your indexes in place.

Large Dimension Tables

If you have a schema with large dimension tables, consider the following
about TARGETjoin processing. A typical example of a large dimension table
is a customer table, but any dimension table with many rows (for example,
more than 10,000) can be considered a large dimension table.
4-16 Informix Red Brick Decision Server Administrator’s Guide

Administration Considerations for TARGETjoin Processing
There are two potential difficulties with queries that use TARGETjoin
processing to join large dimension tables to a fact table:

■ The TARGET and B-TREE indexes on the foreign keys might use a
large amount of disk space.

■ Queries that have weakly selective constraints on the large
dimension table might not perform well.

The first problem is purely a resource problem. If you can afford the space
and the time needed to create the index, this is not a problem. The index size
and the time to create it will vary depending on your schema. Use the dbsize
tool to estimate the index size.

The second problem occurs when you join the large dimension table to the
fact table with a query that has a large number of qualifying rows (weakly
selective) on the dimension table. For example, suppose you have a customer
table with 1,000,000 rows. Suppose also that you want to know something
about all of your customers who are male, and that 75 percent of your
customers are male. That means that 750,000 rows of the dimension table
qualify for this join. In this case, TARGETjoin processing does not perform
well. (STARjoin processing performs well on these weakly selective
constraints on large dimensions when there is a STARindex in which one of
the trailing keys is the foreign key corresponding to the large dimension
table.)

However, if your query constraint on the Customer table produces a small
number of qualifying rows, that query will perform well using TARGETjoin
processing. For example, suppose a query has the following constraint:

where customer.customer_last_name like ’X%’

Only one customer has a last name that begins with “X,” so this query will
perform well using TARGETjoin processing.

Multi-Column Foreign Keys

When you have a schema that contains one or more multi-column foreign
keys on a fact table, and you want to use TARGETjoin processing to join the
fact table to the dimension table referenced by the multi-column key, create a
single B-TREE index on the concatenation of all of the columns of the multi-
column foreign key.
Planning a Database Implementation 4-17

Administration Considerations for TARGETjoin Processing
For example, the Sales table in the Aroma database contains a two-column
foreign key, classkey and prodkey, that references the Product table. To allow
TARGETjoin processing between the Sales and Product tables, you must
create a B-TREE index on the Sales table with a CREATE INDEX statement such
as the following:

create index sales_classkey_prodkey_btree_idx
on sales (classkey, prodkey);

For information about the CREATE INDEX statement, refer to the SQL
Reference Guide.

Tip: The performance of a TARGETjoin query with multi-column foreign keys is
generally not as good as with single-column foreign keys. If possible, design schemas
that have single-column foreign keys for the best performance.

Parallel TARGETjoin Queries

Like other queries in Red Brick Decision Server, TARGETjoin queries use
parallel processing when it is appropriate. The same rules apply to
TARGETjoin parallel queries that apply to STARjoin parallel queries. The
parallel tuning and SET parameters that apply to parallel STARjoin queries
also apply to parallel TARGETjoin queries and are as follows:

■ ROWS_PER_FETCH_TASK

■ ROWS_PER_JOIN_TASK

■ FORCE_FETCH_TASKS

■ FORCE_JOIN_TASKS

For information about setting these parameters and about parallel queries,
refer to Chapter 10, “Tuning a Warehouse for Performance.”
4-18 Informix Red Brick Decision Server Administrator’s Guide

TARGET Index DOMAIN Clause
TARGET Index DOMAIN Clause
When you create a TARGET index, the DOMAIN clause is optional. If you omit
this clause, Red Brick Decision Server dynamically chooses a “hybrid” repre-
sentation for each distinct key value (each different value in the column)
based on the data. The storage representation could be different for different
key values, depending on the number of occurrences of each distinct key
value in the indexed column. This method works well when the data is not
uniform and when you are not sure of the data in the column you are
indexing.

When deciding whether to include the DOMAIN clause in a TARGET index,
consider what you know about your data. If you have a good idea of the level
of uniformity of your data, you can probably make a good choice as to the
DOMAIN size. If you do not know your data that well, or if you are unsure,
do not specify the DOMAIN clause. This automatic hybrid representation
works well in most cases.

Use the dbsize utility to estimate the size of TARGET indexes. The size will
change depending on the DOMAIN clause specification of SMALL, MEDIUM,
or LARGE. To estimate the range of sizes of a TARGETindex where the
DOMAIN clause is not specified (the “hybrid” representation), use dbsize to
calculate the size of indexes of all three DOMAIN values. The upper and lower
bounds from these results define the range of sizes.

The following table shows the different domain sizes, the representation that
each type uses to store data, and recommendations on when to use each type.

DOMAIN Size Representation When to Use

Not specified Hybrid; changes with data Use when you do not know your data, when data is skewed,
or when you are not sure which DOMAIN size to choose.
This is the default and is generally a good choice.

SMALL Bitmap Use when you have fewer than 100 distinct values or
when the expected number of rows in the fact table for each
distinct foreign key value in the fact table is high (greater
than 100,000). This domain size tends to offer the best
performance but can also use the most disk space when the
number of distinct values is high.

 (1 of 2)
Planning a Database Implementation 4-19

Planning Disk Storage Organization
When you consider the number of unique values, the important number is
the number of unique values in the fact table. This might be a smaller number
than the number of unique values in the dimension table. For example, a Day
table might contain ten years worth of days, or 3,650 unique values, but the
database (and therefore the fact table) might only contain one year of data, or
365 unique days. In this case, the best choice for a TARGET index on the
foreign key column that references the Day table is a DOMAIN MEDIUM
TARGETindex.

For the complete syntax for creating TARGET indexes, refer to the
CREATE INDEX statement in the SQL Reference Guide.

Planning Disk Storage Organization
Before creating a new database, carefully estimate the disk space require-
ments for the database and its contents so that you can decide whether to
organize the database contents entirely into default segments or to use
named segments for some or all tables or indexes. To estimate disk space
requirements, you need to estimate the sum of the space required for each
permanent and temporary user table, each automatic and optional index, the
system tables, and the expected growth patterns of your tables.

More specifically, you need to identify the following:

■ The specific permanent user tables to be included in the database.

■ The maximum number of temporary user tables that might exist
within the database at any given time.

MEDIUM Compressed row list Use when the number of distinct values is between 100 and
1000 or when the expected number of rows in the fact table
for each distinct foreign key value in the fact table is
medium (between 1000 and 100,000).

LARGE Uncompressed row list Use when the number of distinct values is greater than
1000 or when the expected number of rows in the fact table
for each distinct foreign key value in the fact table is low
(less than 1000).

DOMAIN Size Representation When to Use

 (2 of 2)
4-20 Informix Red Brick Decision Server Administrator’s Guide

Estimating the Size of User Tables
■ For every permanent and temporary table, the initial number of rows
to be loaded or inserted into the table.

■ For every table, the data types and sizes of every column. For
VARCHAR columns, you will need to know the maximum size of the
column and the typical size of the data that will go into the column.

■ For every table, the columns to be indexed and the types of indexes
to be used. Consider automatic indexes (primary key B-TREE
indexes) and optional indexes (additional B-TREE indexes, STAR
indexes, and TARGET indexes).

■ Anticipated growth patterns for all tables, including growth rate and
maximum expected number of rows, within your planning horizon.

Using the information from your schema design, perform the following steps
to determine the appropriate disk space organization. Each step is described
in the sections that follow.

1. Use the dbsize utility to estimate the storage space for each user table
to be included in the database.

2. Use the dbsize utility to estimate the storage space for each automatic
and optional index to be included in the database.

3. Use the dbsize utility to estimate the size of the system tables for the
database.

4. Determine how you want to use segmented storage, planning a
strategy for distributing data across multiple disks if necessary. If
any of your user tables are expected to grow (in terms of number of
rows stored), review the discussion about growing tables on
page 4-48.

Exception: In Red Brick Decision Server for Workgroups, the warehouse can contain
a maximum of two databases, and the maximum table size is 5 gigabytes of data.

Estimating the Size of User Tables
To calculate the size of a user table, you must know the following:

■ The number of columns

■ Data type of each column

■ The fill factor for variable-width (VARCHAR) columns

■ The expected number of rows in each table
Planning a Database Implementation 4-21

Estimating the Size of User Tables
From this information, you can use the dbsize utility, which is included with
Red Brick Decision Server, to calculate the length in bytes of each row and the
number of bytes required to store all the rows. On UNIX, this utility is located
in the /redbrick_dir/util/service directory. On Windows NT, it is located in the
\redbrick_dir\util\service directory. For information about this utility, refer to
the README file, also in the service directory.

For information on setting VARCHAR column fill factors for maximum
performance, see “Setting the VARCHAR Column Fill Factor” on page 10-28.

For temporary tables for which multiple instances might be present in the
database at the same time, multiply the estimated size of a single instance of
the temporary table by the expected maximum number of instances of that
table that will exist within the database at any given time. Use this product
as the estimated size for the temporary table. For more information, refer to
“Estimating Temporary Space Requirements” on page 4-35.

Example

Assume a table is created as follows:

create table fact_table(
prodkey integer not null,
mktkey integer not null,
description character(65),
dollars decimal (12,2),
primary key (mktkey, prodkey),
foreign key (mktkey) references market (mktkey),
foreign key (prodkey) references product (prodkey));

Assume the table will contain approximately 53,000,000 rows:

1. Run the dbsize utility.

2. Choose the option to estimate the size of user tables.

3. Respond to the prompts for the number of columns, the data types
of the columns, the precision of the decimal data type, and the total
number of estimated rows for the table.

4. For the preceding CREATE TABLE statement, dbsize estimates the size
of the table to be 4,156,872 kilobytes.
4-22 Informix Red Brick Decision Server Administrator’s Guide

Estimating the Size of Indexes
Estimating the Size of Indexes
To estimate the amount of space required by indexes in the database, you
must know the following information:

■ How fill factors determine the amount of space used in STAR and
B-TREE index nodes.

■ How many indexes exist for each table in the database.

■ How to estimate the size for each type of index: STAR, B-TREE, and
TARGET.

Index Fill Factors

Each index has a fill factor associated with it. The index fill factor is the
percentage to which an index node is filled on initial creation of that node.
Initial creation of a node occurs in the following three instances:

■ During the initial load operation when the primary key indexes are
built.

■ Whenever indexes are created with the CREATE INDEX statement.

■ During incremental load operations when new nodes are created
because the previous node reached the fill factor.

After an index node is created and filled to the level specified by the fill factor,
subsequent load operations that insert entries into existing nodes fill those
nodes 100 percent full before a full node splits to form two new 50-percent-
full nodes. Therefore, some nodes might be fuller than specified by the fill
factor. Each new node must then fill to 100 percent before it splits again.

Important: If you do not use Optimize mode with the TMU, any specified fill factor
is ignored.

The purpose of the fill factor is to reserve extra space in each node. The extra
space is used for incremental load operations that insert entries into existing
nodes. If there is sufficient space in the existing nodes for the load operation
to complete, the nodes do not have to split, which is a time-consuming
operation. Eventually, the nodes might become full and split, but the fill
factor gives you some control over the occurrence of these splits, thereby
improving the performance of incremental load operations.
Planning a Database Implementation 4-23

Estimating the Size of Indexes
Leaving space for future entries in index nodes has the following costs:

■ The additional space is allocated but not immediately used in each
index node.

■ More time is required to traverse deep, sparsely filled nodes than to
traverse shallower, more densely filled nodes.

Fill Factors in Index Size Estimates

When estimating the size of an index, you might want to run the calculation
several times to get an idea of how big your index will be initially and how
big it might grow.

Because index size depends on the data to be inserted and the order of
insertion, calculating the exact minimum and maximum size of an index is
impossible. However, by estimating the size of an index several times using
a different fill factor each time, you have a better idea of the space required
as tables and indexes change over time.

As a guideline, assume that a typical index (one that undergoes an average
amount of insertion and deletion after it is initially built) will generally be
between 66 percent and 75 percent full. Use the following descriptions to
select fill factors for your STAR and B-TREE index size calculations, using
multiple calculations to provide a realistic size range for each index that will
change:

■ An arbitrary fill factor tells you how much space the index would
take if it were a new index built from scratch in optimize mode with
that fill factor (CREATE INDEX or LOAD/REORG in optimize mode).

■ A fill factor of 100 percent tells you the absolute minimum amount of
space the index would take.

■ A fill factor of 75 percent gives you an approximate lower bound on
the size of the index after it has undergone an average amount of
change (after the operation that initially built it).
4-24 Informix Red Brick Decision Server Administrator’s Guide

Estimating the Size of Indexes
■ A fill factor of 66 percent gives you an approximate upper bound on
the size of the index after it has undergone an average amount of
change (after the operation that initially built it).

■ A fill factor of 50 percent tells you the practical maximum for the
amount of space the index would take (unless you build your index
with a fill factor of less than 50 percent, in which case that fill factor
should be used to determine the practical maximum).

Use the following guidelines to choose an index fill factor:

■ If you do not plan to perform incremental load operations but intend
to load your database completely each time you update it, specify a
high fill factor. You do not need to save room in the index nodes to
insert more entries.

■ If you are initially loading only a fraction of the data you anticipate
loading in the time frame for which you are planning, specify a fill
factor that corresponds to the percentage of data in the initial load.
You want to save space in each index node for entries corresponding
to the remaining data.

For example, if you are loading 95 percent of the data in the initial load, with
a relatively small amount of data to be added later, specify a 95-percent fill
factor. Conversely, if you are loading only 5 percent of the data initially before
you load the remaining data for the production database, specify a 5 percent
fill factor.

Important: Fill factors are specified in the rbw.config file for the automatically
created indexes and with a CREATE INDEX statement for user-created indexes. The
fill factors for a specific index can be modified with an ALTER INDEX statement.

For information on setting or changing an index fill factor, or finding the fill
factor for a specific index, refer to “Setting the Index Fill Factor” on
page 10-37.
Planning a Database Implementation 4-25

Estimating the Size of Indexes
STAR Indexes

The size of a STAR index depends on the expected number of rows in the
tables referenced by the index. If you know this number, use it to determine
the MAXROWS PER SEGMENT and MAXSEGMENTS values when you create
the table. You must specify MAXROWS PER SEGMENT when you create refer-
enced (dimension) tables that will participate in a STAR index. Otherwise, the
CREATE STAR INDEX statement fails. By accurately forecasting and explicitly
specifying the maximum number of rows when the table is created, you
simplify size calculations and maintenance tasks, such as rebuilding
STAR indexes when the dimension tables grow.

To estimate the size of a STAR index using the dbsize utility, you need to know
the following:

■ For each foreign key column that participates in the STAR index: the
estimated maximum number of rows and number of segments in the
referenced (dimension) table (MAXROWS PER SEGMENT multiplied
by MAXSEGMENTS)

■ The estimated number of rows to be included in the referencing (fact)
table

■ The fill factor for the index

B-TREE Indexes

To estimate the size of a B-TREE index using the dbsize utility, you need to
know the following:

■ The number of columns to be indexed.

■ The data type of each column to be indexed.

■ The fill factor for the index.

■ The estimated number of rows to be included in the indexed table.
4-26 Informix Red Brick Decision Server Administrator’s Guide

Example: Calculating Table, Index, and System Table Sizes
TARGET Indexes

To estimate the size of a TARGET index using the dbsize utility, you need to
know the following:

■ The estimated domain size (the number of possible unique values)
for the indexed column.

■ The data type of the column in the TARGET index.

■ The estimated number of rows (MAXROWS PER SEGMENT) in each
segment of the indexed table.

■ The estimated percentage of NULL rows in the indexed table.

■ The domain for the column—SMALL, MEDIUM, or LARGE.

■ The number of segments in the table.

Example: Calculating Table, Index, and System Table Sizes
This example illustrates how to size a database. Assume the following tables
will be included in a new database.

Table Fact1 contains approximately 53,000,000 rows and is defined as
follows:

create table fact1 (
tran integer not null,
seq integer not null,
prodkey integer not null,
mktkey integer not null,
description character(55),
dollars decimal(12,2),
primary key (tran, seq),
foreign key (mktkey) references market (mktkey),
foreign key (prodkey) references product (prodkey));

A STAR index will be built on the Prodkey and Mktkey columns.

Table Market contains approximately 5000 rows and is defined as follows:

create table market (
mktkey integer not null,
mktname character(20),
primary key (mktkey));

A TARGET index will be built on the Mktname column.
Planning a Database Implementation 4-27

Example: Calculating Table, Index, and System Table Sizes
Table Product contains approximately 520,000 rows and is defined as follows:

create table product (
prodkey integer not null,
category integer,
primary key (prodkey));

A B-TREE index will be built on the Category column.

Fact1 Table and Its Indexes

The table Fact1 has both a STAR index and a primary key B-TREE index.

Table Size: Fact1

Use dbsize to calculate table size for the table Fact1:

1. Run the dbsize utility.

2. Choose the option to estimate the size of user tables.

3. Respond to the prompts for the number of columns, the data types
of the columns, the precision of the decimal data type, and the total
number of estimated rows for the table, which is 53,000,000 in this
example.

4. For the CREATE TABLE statement for Fact1, dbsize estimates the size
of the table to be 4,038,104 kilobytes.

STAR Index: Fact1

Use dbsize to calculate the STAR index size. Table Fact1 has foreign key refer-
ences to tables Market and Product, and you have decided to create a STAR
index on the Prodkey and Mktkey columns:

1. Run the dbsize utility.

2. Choose the option to estimate the size of indexes.

3. Choose the option to estimate the size of STAR indexes.

4. Enter the maximum number of rows for the Market and Product
tables.

5. Enter the estimated number of rows for the fact table, which is
53,000,000 in this example.
4-28 Informix Red Brick Decision Server Administrator’s Guide

Example: Calculating Table, Index, and System Table Sizes
6. Enter the fill factor. Assume the data is ordered for the initial load but
will be updated through incremental loads, so use a fill factor of 66
percent. For a fill factor of 66 percent, you must enter .66 in dbsize.

7. For the CREATE TABLE statement for Fact1, dbsize estimates the size
of the STAR index to be 946,448 kilobytes.

Primary B-TREE Index: Fact1

The primary key B-TREE index is created automatically when you create the
table Fact1. Use dbsize to calculate the B-TREE index size:

1. Run the dbsize utility.

2. Choose the option to estimate the size of indexes.

3. Choose the option to estimate the size of B-TREE indexes.

4. Enter the number of columns to be indexed, which is 2 (Tran and Seq)
in this example.

5. Enter the data type for each column.

6. Enter the estimated number of rows for the table, which is 53,000,000
in this example.

7. Enter the fill factor. Assume the data is ordered for the initial load but
will be updated through incremental loads, so use a fill factor of 66
percent. For a fill factor of 66 percent, enter .66 in dbsize.

8. For the CREATE TABLE statement for Fact1, dbsize estimates the size
of the primary key B-TREE index to be 1,265,704 kilobytes.

Market Table and Its Indexes

The table Market has both a primary key B-TREE index and a TARGET index.

Table Size: Market

Use dbsize to calculate table size for the table Market:

1. Run the dbsize utility.

2. Choose the option to estimate the size of user tables.
Planning a Database Implementation 4-29

Example: Calculating Table, Index, and System Table Sizes
3. Respond to the prompts for the number of columns, the data types
of the columns, and the total number of estimated rows for the table,
which is 5000 in this example.

4. For the CREATE TABLE statement for Market, dbsize estimates the size
of the table to be 136 kilobytes.

The Market table has a primary key B-TREE index and an optional
TARGET index.

Index Size: Primary Key B-TREE Index

Use dbsize to calculate the size of B-TREE indexes:

1. Run the dbsize utility.

2. Choose the option to estimate the size of indexes.

3. Choose the option to estimate the size of B-TREE indexes.

4. Enter the number of columns to be indexed, which is 1 (Mktkey) in
this example.

5. Enter the data type for the column, which is integer for this example.

6. Enter the estimated number of rows for the indexed table, which is
5000 in this example.

7. Enter the fill factor. Assume the data is ordered and updated infre-
quently, so use a fill factor of 100 percent. For a fill factor of 100
percent, you must enter 1.00 in dbsize.

8. For the CREATE TABLE statement for Market, dbsize estimates the size
of the primary key B-TREE index to be 80 kilobytes.

Index Size: TARGET Index on Mktname Column

Use dbsize to calculate the size of TARGET indexes:

1. Run the dbsize utility.

2. Choose the option to estimate the size of indexes.

3. Choose the option to estimate the size of TARGET indexes.

4. Enter the estimated domain size for the Mktname column. In this
example, assume that there are 20 markets and therefore a domain
size of 20.
4-30 Informix Red Brick Decision Server Administrator’s Guide

Example: Calculating Table, Index, and System Table Sizes
5. Enter the data type for the column, which is character for this
example.

6. Enter the number of characters, which is 20 in this example.

7. Enter the estimated number of rows for the table, which is 5000 in
this example.

8. Enter the estimated percentage of NULL rows for the Market table.
For this example, assume no NULL values, and enter 0.0.

9. Enter the domain size, which is SMALL in this example. For a
description of domain size for TARGET indexes, refer to “TARGET
Indexes” on page 4-10.

10. Enter the number of segments in the table, which is 1 for this
example.

11. For the CREATE TABLE statement for Market, dbsize estimates the size
of the TARGET index to be 200 kilobytes.

Product Table and Its Indexes

The Product table has a primary key B-TREE index and an optional B-TREE
index.

Table Size: Product

Use dbsize to calculate table size for the table Product:

1. Run the dbsize utility.

2. Choose the option to estimate the size of user tables.

3. Respond to the prompts for the number of columns, the data types
of the columns, and the total number of estimated rows for the table,
which is 520,000 in this example.

4. For the CREATE TABLE statement for Product, dbsize estimates the
size of the table to be 4584 kilobytes.

The Product table has a primary key B-TREE index and an optional B-TREE
index.
Planning a Database Implementation 4-31

Example: Calculating Table, Index, and System Table Sizes
Index Size: Primary Key B-TREE Index

Use dbsize to calculate the size of B-TREE indexes:

1. Run the dbsize utility.

2. Choose the option to estimate the size of indexes.

3. Choose the option to estimate the size of B-TREE indexes.

4. Enter the number of columns to be indexed, which is 1 (Prodkey) in
this example.

5. Enter the data type for the column, which is integer for this example.

6. Enter the estimated number of rows for the fact table, which is
520,000 in this example.

7. Enter the fill factor. Assume the data is updated frequently, so use a
fill factor of 66 percent. For a fill factor of 66 percent, you must enter
.66 in dbsize.

8. For the CREATE TABLE statement for Product, dbsize estimates the
size of the primary key B-TREE index to be 9312 kilobytes.

Index Size: B-TREE Index on Category Column

Use dbsize to perform the following actions:

1. Run the dbsize utility.

2. Choose the option to estimate the size of indexes.

3. Choose the option to estimate the size of B-TREE indexes.

4. Enter the number of columns to be indexed, which is 1 (Category) in
this example.

5. Enter the data type for the column, which is integer for this example.

6. Enter the estimated number of rows for the fact table, which is
520,000 in this example.

7. Enter the fill factor. Assume the data is updated frequently, so use a
fill factor of 66 percent. For a fill factor of 66 percent, you must enter
.66 in dbsize.

8. For the CREATE TABLE statement for Product, dbsize estimates the
size of the B-TREE index on the Category column to be 9312 kilobytes.
4-32 Informix Red Brick Decision Server Administrator’s Guide

Estimating the Size of System Tables
Estimating the Size of System Tables
A complete set of system tables is created and maintained for each database.
These tables contain information about the database and its users. The
system tables are stored within the files named RB_DEFAULT_IDX,
RB_DEFAULT_INDEXES, RB_DEFAULT_LOADINFO, RB_DEFAULT_LOCKS,
RB_DEFAULT_SEGMENTS, and RB_DEFAULT_TABLES, which are located in the
database directory.

The size of the system tables for a given database depends on the number of
tables and columns created in the database, the number of views and macros
defined, the number of users granted access to the database, and the load
activity. The RB_DEFAULT_IDX and RB_DEFAULT_LOADINFO files grow as
necessary to hold the system tables. For most databases, the total space
required for the system tables is less than 1 megabyte.

Use dbsize to estimate the size of the system tables. This utility will prompt
you for the following information:

■ The total number of columns.

■ The total number of indexes.

■ The total number of segments.

■ The total number of views.

■ The total number of tables.

■ The total number of primary keys and the number of columns each
key contains.

■ The total number of foreign keys and the number of columns each
key contains.

Size: System Tables

For the database used in the previous examples, use dbsize to calculate the
size of the system tables:

1. Run the dbsize utility.

2. Choose the option to estimate the size of system tables.

3. Enter the total number of columns, which is 10 in this example.

4. Enter the total number of tables, which is 3 in this example.
Planning a Database Implementation 4-33

Total Space for User Tables, Indexes, and System Tables
5. Enter the total number of segments. For this example, assume that
each table uses 1 segment and that each index uses 1 segment.
Therefore, there are 9 segments for this example.

6. Enter the total number of indexes, which is 6 in this example.

7. Enter the total number of views, which is 0 in this example.

8. Enter the number of primary keys plus .25 for each extra column in
a multi-column key. In this example, there are 3 primary keys, one of
which is 2 columns. Therefore, enter 3.25.

9. Enter the number of foreign keys, which is 2 in this example.

10. For this example, dbsize estimates the size of the system tables to be
392 kilobytes.

Total Space for User Tables, Indexes, and System Tables
Find the sum of the size estimates obtained in the previous examples from
dbsize to calculate the total space required for all the user tables, indexes, and
system tables.

Database Object
Space Required
(in kilobytes)

Fact1 table

STAR index

Primary B-TREE index

4,038,104

946,448

1,265,704

Market table

Primary B-TREE index

TARGET index

136

80

200 B

Product table

Primary B-TREE index

B-TREE index on Category

4584

9312

9312

System tables 392

Total space 6,274,272
4-34 Informix Red Brick Decision Server Administrator’s Guide

Estimating Temporary Space Requirements
Estimating Temporary Space Requirements
In addition to the space needed to store the database tables and indexes, you
also need to plan for temporary storage of intermediate results during
optimized index-building and query operations. Temporary space for index
building is controlled by the INDEX_TEMPSPACE configuration parameters.
For queries, it is controlled by the QUERY_MEMORY_LIMIT and
QUERY_TEMPSPACE configuration parameters. These configuration param-
eters specify one or more directories in which to store temporary files, how
memory is used, and a maximum amount of disk space to be used as
temporary space by a single operation.

This section describes temporary space requirements in terms of:

■ How temporary space is used for optimized index-building opera-
tions, including those that build multiple indexes in parallel, both
online and offline, and how to calculate the requirements for these
operations.

■ How temporary space is used for queries and how to calculate the
requirements.

In addition to the information that follows about how various database
operations use temporary space, you must also consider system resources
and workload requirements. Some general considerations are as follows:

■ Multiple databases

Each database should have its own temporary space.

■ Separate temporary-space areas for query and index-building
operations

If you use the same space for both types of operations, the system
will dynamically and impartially allocate the space as needed.
However, you might want more control over the resource allocation.

■ Accommodating multiple users

You can divide available space among multiple users, or you can
plan to distribute the workload over time.
Planning a Database Implementation 4-35

How Optimized Index-Building Operations Use Temporary Space
■ Maximum data segment size

This operating-system value, usually set as a kernel configuration
parameter, determines how much memory a process can use. This
memory space is used by Red Brick Decision Server as buffer cache
for the TMU (specified by the TMU_BUFFERS parameters), staging
arrays for index building (specified by the parameter
INDEX_TEMPSPACE_THRESHOLD), and the remainder as general
working space. ♦

■ Physical memory

Consider the amount of memory on your computer. ♦
■ Swap space

Even though a system is configured with sufficient swap space, out-
of-memory errors can occur if insufficient swap space is available for
the process stack and the data when a swap occurs.

For information about how temporary disk space is allocated and the
temporary space parameters, refer to “Setting Temporary Space Parameters”
on page 10-7.

How Optimized Index-Building Operations
Use Temporary Space
Database administration operations that build an index for the first time use
an optimized mode for building indexes from unordered data. Other opera-
tions that affect existing indexes (TMU LOAD DATA operations in APPEND,
REPLACE, and INSERT mode and REORG operations) use optimized mode
only if it is specified. The optimized method achieves faster performance and
usually results in more compact indexes than those built in nonoptimized
mode, but it achieves these improvements through more intensive use of
memory and temporary disk storage (scratch space). As a result, these opera-
tions require additional planning to ensure adequate memory and disk
space.

Tip: Load operations that build a completely new index or completely replace an
existing index from ordered data do not use optimized mode and hence have no special
temporary space requirements. Information in this section does not apply to such
operations.

UNIX

WIN NT
4-36 Informix Red Brick Decision Server Administrator’s Guide

Estimating Temporary Space Values for Index-Building Operations
When optimized operations for data loads, table reorganization, and index
building need to process a large number of rows, they do so by dividing the
process into two phases. During the first phase—the sort phase—groups of
index entries are built in the temporary space. During the second phase—the
merge phase—these groups are merged into the index. Very large online load
operations or the creation or reorganization of an index on a very large table
often requires multiple cycles of sorting and merging.

During the sorting phase, the groups of index entries are first held in memory
before being written to temporary disk space. The INDEX_TEMPSPACE
THRESHOLD parameter determines the total amount of memory available to
a server or the TMU for holding index entries. As the in-memory holding area
fills up, groups are written to a file in the locations specified by the
INDEX_TEMPSPACE DIRECTORY parameter(s) or to system temporary space
if this parameter is not set. The shift from the sort phase to the merge phase
occurs when there is no more input data or when the limit on the amount of
index-building temporary disk space (MAXSPILLSIZE) is reached. If multiple
indexes are being built in a single operation, this space is divided among
them.

Planning for these operations consists of making sure that adequate memory
and disk space are available for them and setting the INDEX_TEMPSPACE
parameters to reflect the available memory and disk space. Some guidelines
for setting these parameters are provided in the following sections.

Estimating Temporary Space Values for Index-
Building Operations
Index-building temporary space is used for load operations, table reorgani-
zation, and index creation that use the optimized index-building procedure.
For operations that involve multiple indexes, the space is allocated evenly
among all the indexes.

DIRECTORY Location Values

Temporary space of index-building operations can use directories spread
over multiple file systems. The goal in specifying temporary space directories
for INDEX_TEMPSPACE is two-fold: to overcome file system limitations and
to avoid I/O contention. For each operation, the directories are used in a
random sequence, with space being allocated only as it is needed.
Planning a Database Implementation 4-37

Estimating Temporary Space Values for Index-Building Operations
If a warehouse contains multiple databases, each database should have a
separate set of temporary space directories, which must be specified with SET
commands rather than a single set of rbw.config file entries.

For more information about how space is allocated among the various direc-
tories designated as temporary space directories, refer to “Setting Temporary
Space Parameters” on page 10-7.

THRESHOLD Value

The threshold specifies how much memory is used before the data spills to
temporary space on disk. The goal in selecting a threshold for
INDEX_TEMPSPACE is to select a large value relative to the system on which
Red Brick Decision Server is running but not so large a value that errors
occur. Selecting too large a value—a value that exceeds available memory—
might cause the operation to fail with an out-of-memory error. Selecting too
small a value might cause poor performance because of time spent writing to
disk. You want to estimate a reasonable threshold for both online and offline
load operations and other index-building operations.

To estimate the threshold

1. Determine the maximum program data space allowed on your
computer. This value is usually set as part of the UNIX kernel config-
uration for your computer (sometimes called maxdsize). A typical
value is 64 megabytes. If you do not know the value configured for
your computer, consult your system administrator or system vendor.

2. Select a value for INDEX_TEMPSPACE_THRESHOLD that is one
quarter of the maximum data space size for your system. For
example, if the maximum data space size on your computer is 64
megabytes, choose a value of 16 megabytes. (The value you enter is
automatically rounded up to the nearest 8-kilobyte block.) ♦

To estimate a threshold

1. Determine the amount of physical memory on your computer.

2. Select a value for INDEX_TEMPSPACE_THRESHOLD that is one
quarter of the physical memory. For example, if the physical memory
on your computer is 64 megabytes, choose a value of 16 megabytes.
(The value you enter is automatically rounded up to the nearest 8-
kilobyte block.) ♦

UNIX

WIN NT
4-38 Informix Red Brick Decision Server Administrator’s Guide

Estimating Temporary Space Values for Index-Building Operations
MAXSPILLSIZE Value

The maximum spill size specifies how much temporary disk space an
operation can use. The goal in selecting a maximum spill size for
INDEX_TEMPSPACE is to pick the largest value that allows the operation to
complete without running out of temporary space. Selecting too large a value
can cause a load operation, table reorganization, or index creation to fail with
an out-of-space condition. Selecting too small a value for an online load
increases the number of sorting-and-merging cycles performed and, as a
result, increases the time required for the operation. Selecting too small a
value for an offline load operation causes the operation to fail.

Because online operations can perform multiple sort and merge cycles, but
offline operations must be able to complete in a single cycle, the maximum
spill size requirements for online and offline operations are different.

Online Index-Building Operations

To determine a reasonable value for maximum spill size for online optimized
index-building operations:

1. Determine the number of indexes, excluding TARGET indexes of
DOMAIN SMALL or DOMAIN MEDIUM, that are to be processed in the
operation. The maximum spill size will be split evenly among all
these indexes.

When determining the number of indexes involved in a load or
REORG operation on a table, include all indexes (excluding
TARGET indexes of DOMAIN SMALL or DOMAIN MEDIUM) on the
table to be loaded.

When determining the number of indexes involved in a REORG
operation to rebuild one or more specific indexes by name, include
the number of indexes (excluding TARGET indexes of DOMAIN
SMALL or DOMAIN MEDIUM) named in the REORG statement.

When determining the number of indexes involved in a CREATE
INDEX operation, include the number of indexes (excluding
TARGET indexes of DOMAIN SMALL or DOMAIN MEDIUM) being
created in one statement (because each index is handled by a
separate process).
Planning a Database Implementation 4-39

Estimating Temporary Space Values for Index-Building Operations
2. For each index from step 1, use the dbsize utility to estimate the size
of each index.

3. Add the values calculated with dbsize for each index (excluding
TARGET indexes of DOMAIN SMALL or DOMAIN MEDIUM). This sum
is the total_space_required for the index building operation.

4. Decide how much temporary disk space—MAXSPILLSIZE—to
allocate for index building, based on system resources and the
following relationships:

total_space_required <= MAXSPILLSIZE x
number_of_cycles

MAXSPILLSIZE <= available_temp_space

where:

If you have enough temporary space, a higher value of
INDEX_TEMPSPACE_MAXSPILLSIZE results in a lower number of
sort-and-merge cycles required to build the indexes, which
ultimately results in a faster index-building time. The value you
enter for INDEX_TEMPSPACE_MAXSPILLSIZE is automatically
rounded up to the nearest 8-kilobyte block.

Offline Index-Building Operations

An offline load operation splits the two-phase processing (sorting and
merging) of optimized loading into two separate TMU operations. An offline
load operation on a large, multisegment table provides better database avail-
ability because users can still access the table for queries during the first
phase of an offline load operation. During the actual offline load step, the
TMU reads and formats the input records and loads them into the offline
segment. It also builds the groups of index data in the index-building
temporary space. During the second phase, a TMU SYNCH operation
synchronizes the offline segment with the associated table.

number_of_cycles The number of sort-and-merge cycles.

available_temp_space The space available in the directories
designated as index-building temporary
space.
4-40 Informix Red Brick Decision Server Administrator’s Guide

Estimating Temporary Space Values for Index-Building Operations
A successful offline load operation requires more careful planning than
online load operations for two reasons:

■ For an offline load operation, enough temporary space must be
available to complete the load operation in one pass. Otherwise, the
operation fails. Unlike an online load, an offline load cannot cycle
back and forth between building the index groups and merging them
into the index. Thus, the amount of temporary space available and
the setting of the INDEX_TEMPSPACE_MAXSPILLSIZE parameter
limit how much data can be loaded in a single load step.

■ The temporary space allocated by the offline load is not released
until the SYNCH operation completes. For example, if the load
operation is run during the day, and the SYNCH operation is delayed
until evening to increase the daytime availability of the target table,
the temporary space used by the load is unavailable for other opera-
tions during that time. If other load, table reorganization, or index-
creation operations are performed during this interval, they might
not find enough temporary space. As a result, you might want to
create one or more temporary-space directories for an offline load
operation and use the TMU SET command to set the
INDEX_TEMPSPACE directories to those locations for that operation.

To calculate the disk space requirements for an offline load operation

1. For each index (including TARGET indexes), use the dbsize utility to
estimate the size of each index.

2. Add the values calculated with dbsize for each index. This sum is
total_space_required for the index-building operation.

3. Set MAXSPILLSIZE according to the following relationships:
total_space_required <= MAXSPILLSIZE <=
available_temp_space

where available_temp_space is the space available in the directories
allocated for index-building temporary space. The value you enter is
automatically rounded up to the nearest 8-kilobyte block.

If you cannot set the INDEX_TEMPSPACE_MAXSPILLSIZE parameter to satisfy
this relationship, you must either reduce the number of rows to be loaded in
the offline load operation or increase the amount of temporary space
available for this operation.
Planning a Database Implementation 4-41

Temporary Space Requirements for TARGET Indexes
Temporary Space Requirements for TARGET Indexes
When you create TARGET indexes on large tables (for example, when you
create TARGET indexes on foreign key columns of a fact table to enable
TARGETjoin processing), note the following temporary space requirements:

■ For DOMAIN SMALL and DOMAIN MEDIUM, no temporary space is
used.

■ For DOMAIN LARGE and when no domain value is specified (the
“hybrid” representation), the index build operation can use a
maximum amount of temporary space based on the following
formula:

Temporary Space = (keysize + 11) x rows

where keysize is the width of the column (in bytes) being indexed and
rows is the number of rows in the table. You do not necessarily need
to allocate this much space for the index build operation, however. If
the temporary space is exhausted, it triggers a sort-and-merge cycle
from the temporary space into the actual index. The more sort-and-
merge cycles that occur, the more time the index build operation
takes.

For example, if you were creating a “hybrid” TARGET index on an
integer column of a billion row table, the maximum amount of
temporary space Red Brick Decision Server will use to build the
index is:

(4 + 11) x 1,000,000,000 = 15,000,000,000 bytes, or
approximately 15 gigabytes

In this case, allocating 15 gigabytes of temporary space ensures that
the index will require only one sort-and-merge cycle, thus providing
the fastest index build time. If you allocate 2 gigabytes of temporary
space, this will trigger seven sort-and-merge cycles, adding to the
total time of building the index.
4-42 Informix Red Brick Decision Server Administrator’s Guide

How Query Operations Use Temporary Space
How Query Operations Use Temporary Space
The amount of memory allocated to a query is set with the parameter
QUERY_MEMORY_LIMIT. The location and amount of temporary space is
allocated for query operations with the QUERY_TEMPSPACE_DIRECTORY and
QUERY_TEMPSPACE_MAXSPILLSIZE parameters. This space is used to store
the staging arrays for intermediate query results, subquery results, and final
answer sets. It is used only by query operations and never by the TMU.

The query temporary space, like that for index-building operations, can be
spread over directories residing in different file systems. The entire memory
limit and maximum spill size values specified are allocated on a per-query
basis, where a query is defined to include each of its subqueries, if any. For
more information about how space is allocated among the various directories
designated as temporary space directories, refer to “Setting Temporary Space
Parameters” on page 10-7.

A query that exceeds the memory limit and spills to temporary disk space
must have enough disk space to complete the entire result set, unlike an
online index-building operation that can reuse disk space by splitting the
operation into multiple cycles.

Estimating a QUERY_MEMORY_LIMIT Value for Queries
To estimate a reasonable QUERY_MEMORY_LIMIT value, use the following
procedure:

1. Estimate the number of result rows that will be returned.

2. Determine the row size by adding:

■ The size of the data type for each returned column

■ 10 bytes for overhead

■ For GROUP BY operations, 32 bytes per group

3. Multiply the row size by the number of result rows. This number will
allow all processing of intermediate results to occur in memory.
Planning a Database Implementation 4-43

Estimating a MAXSPILLSIZE Value for Queries
4. Adjust this number based on memory available, complexity of
queries, and number of users:

■ Determine the maximum program data space that a single
process can use. Never set QUERY_MEMORY_LIMIT to exceed
this number. ♦

■ Determine the amount of physical memory on your computer.
Never set QUERY_MEMORY_LIMIT to exceed this number. ♦

■ Queries with subqueries or queries that use the GROUP BY,
DISTINCT, or ORDER BY clause can benefit from a higher memory
limit. If GROUP BY operations involve a large number of groups,
setting a higher memory limit can improve performance because
more processing can occur in memory.

■ In a multiuser environment, however, lower values for
QUERY_MEMORY_LIMIT often work better because they avoid
excessive paging that occurs when multiple individual queries
consume large amounts of physical memory.

The value you enter is automatically rounded up to the nearest
8-kilobyte block.

Estimating a MAXSPILLSIZE Value for Queries
To estimate a reasonable MAXSPILLSIZE value for query temporary slices, use
the following procedure:

1. Determine the maximum amount of disk space available for query
temporary operations and the number of users that will be running
queries that spill. Multiple users running large queries will compete
for space in the query temporary-space directories. You might want
to consider providing separate temporary-space directories for
individual users (with SET commands).

2. Choose a MAXSPILLSIZE value that limits the space used by each spill
so that all users can be accommodated during peak loads. (The value
you enter is automatically rounded up to the nearest 8-kilobyte
block.)

UNIX

WIN NT
4-44 Informix Red Brick Decision Server Administrator’s Guide

Planning for Segmented Storage
Planning for Segmented Storage
After you have planned the database design and estimated the disk storage
required for fully loaded and indexed user and system tables, you must
decide whether you want to use named or default storage segments.
Depending on the initial space requirements and growth patterns expected
for the database, you might choose to assign all user tables and indexes to
default segments. The creation and maintenance of default segments is
simpler, but you do not have the flexibility offered by named segments. For
more information about default and named segments, refer to “Segmented
Storage” on page 2-7 and Chapter 9, “Maintaining a Data Warehouse.”

Default segments are created when a CREATE TABLE statement containing no
explicit segment assignment is issued. No explicit administrator action is
required to create default segments. Files associated with default segments
reside in the database directory or in a default directory if one is specified in
the rbw.config file. A default segment can be modified with an ALTER
SEGMENT statement.

Warning: If your warehouse contains multiple databases and you plan to run offline-
load operations on different databases at the same time, do not plan to use a single
default directory for all default segments.

Named segments are explicitly created with a CREATE SEGMENT statement,
and the list of files assigned to a named segment is managed with the
CREATE SEGMENT and ALTER SEGMENT statements. The files associated
with a named segment reside at locations specified when the segment is
created or altered.
Planning a Database Implementation 4-45

Determining When to Use Default and Named Segments
Determining When to Use Default and Named Segments
Storing tables and indexes in default segments simplifies database creation
and administration. However, you must use named segments in the
following cases:

■ If the estimated size for a single user table or its associated automatic
and optional indexes exceeds 2 gigabytes, that table must be placed
in a named segment to distribute database files across multiple file
systems.

■ If the total estimated size for the database exceeds 4 gigabytes, some
tables and indexes must be placed in named segments.

■ If the total estimated size for a table or its associated indexes or for
the entire database exceeds the space available on the file system
where the database directory is to reside, some tables or indexes
must be placed in named segments with PSUs in other file systems.

If you expect your database to grow to the point that you will want to
distribute data over multiple segments, you probably should use named
segments.

However, if you create a table or index in a default segment and later decide
you want to add more (named) segments, you can do so after specifying a
segmenting column (with an ALTER TABLE statement). Or if you initially
choose to use a default segment but later find that a table or index outgrows
its default segment, you can use the ALTER SEGMENT statement to move the
single PSU to another location or add additional PSUs to the segment.

If you plan to use named segments, keep the following considerations in
mind:

■ A named segment can contain only one table or one index (or
nothing).

■ A segment can contain up to 250 PSUs (files). You must decide
whether to assign a few large files or more smaller files to the
segment. A few large files might require reservation of entire disk
partitions whereas use of smaller files might allow fragments of disk
space on various file systems to be effectively used for a single table
or index. In making this decision, consider that managing and
maintaining a few large files is generally easier than managing and
maintaining many small files.
4-46 Informix Red Brick Decision Server Administrator’s Guide

Determining When to Use Default and Named Segments
■ You must also decide how to allow files to grow. For each PSU, you
can specify an initial size, which is always reserved at the time the
segment is created; a maximum size to which the PSU can grow; and
an extend size, which is the increment by which the PSU will grow.
Large initial sizes for PSUs require more space to be reserved initially
whereas smaller initial sizes are more likely to result in
fragmentation.

■ Red Brick Decision Server uses disk space in 8-kilobyte blocks, so
when a maximum file size is specified in a CREATE SEGMENT
statement, the space allocated is rounded up to the nearest
8 kilobytes. The first file in a segment is always allocated a minimum
of 2 blocks, or 16 kilobytes.

■ If your system configuration permits, spread segment files across
multiple disk drives and multiple I/O buses to improve access times.

■ Segments (of multisegmented tables and indexes) can be taken
offline for loading or restore operations and continue to provide
limited query access. If this feature is of interest at your site, carefully
consider how to segment the data and the locations and sizes of PSUs
needed to accommodate the data, keeping in mind the uses you
intend to make of offline operations on segments.

■ The amount of parallelism used for query processing is limited by
the number of PSUs in which the data being queried is stored. For
example, if a table contains only a single PSU, no parallel processing
occurs for queries that require a relation scan of that table. Therefore,
keep in mind the desired degree of parallelism when you define
PSUs. For more information about PSUs and parallelism, refer to
Chapter 10, “Tuning a Warehouse for Performance.”
Planning a Database Implementation 4-47

Considerations for Growing Tables
Considerations for Growing Tables
In some applications, database tables grow over time. Red Brick Decision
Server supports the addition of records to existing tables with the incre-
mental load facility of the Table Management Utility or with the INSERT
statement. By placing large, growing tables in named segments, you have the
flexibility to allocate additional storage when and where you need it.

Disk space reserved for growing tables is not actually used until required by
incremental row additions, so the space does not need to be available at the
time the segment is created.

With growing tables, you should set up a periodic administrative procedure
to determine and evaluate current space usage, monitoring table growth and
available space by querying the system tables. As tables grow, you can use
the ALTER SEGMENT statement to incrementally allocate space as necessary.

Warning: Because disk space is not actually allocated until it is needed, you might
run out of disk space as you add the data even though a sufficient amount is specified
in a CREATE SEGMENT statement.

Effect of Table Growth on STAR Indexes
For tables that will grow, you must also consider how the STAR indexes will
grow.

A STAR index relates a referencing table to other referenced tables through
FOREIGN KEY clauses. At the time a STAR index is built, certain internal
aspects of the index are statically determined, based on the MAXSEGMENTS
and MAXROWS PER SEGMENT values specified for the dimension tables
referenced by the fact table. You must specify MAXROWS PER SEGMENT
when you create dimension (referenced) tables that will participate in a STAR
index. Otherwise the CREATE STAR INDEX statement will fail.
4-48 Informix Red Brick Decision Server Administrator’s Guide

Effect of Table Growth on STAR Indexes
A STAR index must be large enough to accommodate any rows added to the
referenced tables. If it is not large enough, it might become invalid when new
rows are added. If a STAR index becomes invalid, it must be either rebuilt
using the REORG command of the Table Management Utility or dropped and
re-created. With frequently updated referenced (dimension) tables or large
related referencing (fact) tables, the overhead of performing regular REORG
operations can become prohibitive.

If you change the values of MAXSEGMENTS and MAXROWS PER SEGMENT
for a growing referenced table, a REORG operation is often needed when
records are added to the table or when an ALTER SEGMENT statement is used
to expand the segment. If you use accurate values for the MAXSEGMENTS and
MAXROWS PER SEGMENT parameters to reserve sufficient space in advance
for growing dimension tables, the need to alter a segment and perform a
REORG operation can be avoided or, if not avoided, anticipated and planned
in advance.

Red Brick Systems strongly recommends that you specify MAXSEGMENTS
and MAXROWS PER SEGMENT values for each table because you cannot
create a STAR index that references a table unless these parameters have been
defined.
Planning a Database Implementation 4-49

5
Chapter
Creating a Database
In This Chapter . 5-3

Overview . 5-3

Creating the Database Structure 5-4
Initializing the Database. 5-5
Defining a Logical Database Name 5-7
Changing the DBA Account Password. 5-8

Creating the Database Objects 5-10

Creating Segments 5-11

Creating Tables . 5-12
Setting the MAXSEGMENTS and MAXROWS PER SEGMENT

Parameters 5-12
Naming Constraints for Primary and Foreign Keys 5-13
Maintaining Referential Integrity with ON DELETE 5-14

Creating Indexes 5-15
INDEX TEMPSPACE Parameters 5-15
Parallel Indexes. 5-16
Loading Tables with Indexes 5-17
STAR Indexes 5-17
TARGET Indexes 5-18

Creating Views . 5-18

Creating and Managing Macros 5-20
Guidelines for Macro Definitions 5-20
Availability and Scope 5-21

5-2 Infor
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
After you have designed the database schema and planned its implemen-
tation, you are ready to create the database system tables and other database
objects. This chapter describes the process of creating a database: initializing
the database and creating its tables, indexes, and other database objects. This
chapter includes the following sections:

■ Overview

■ Creating the Database Structure

■ Creating the Database Objects

■ Creating Segments

■ Creating Tables

■ Creating Indexes

■ Creating Views

■ Creating and Managing Macros

Overview
Some of the tasks described in this chapter will be performed multiple times
over the life of a database as it is revised to accommodate changing user
requirements. For example, tables might be added to or removed from a
database, and the definition of views, macros, and user privileges might
change.

This chapter offers guidelines for creating the various database objects and
provides some examples. For a complete description of the SQL syntax, refer
to the SQL Reference Guide. For a complete example of how to create a
database, refer to Appendix A, “Example: Building a Database.”
Creating a Database 5-3

Creating the Database Structure
To create a database

1. Specify the locale when you install Red Brick Decision Server.

2. Create the database structure using the rb_creator utility on UNIX or
the dbcreate utility on Windows NT.

3. Create the database objects, including segments, user tables, indexes,
synonyms, views, and macros, based on the logical schema you
defined and on the physical implementation you have chosen.

After you create the database, you must provide user access, as described in
Chapter 7, “Providing Database Access and Security,” and load data into the
database with the Table Management Utility (TMU), as described in the Table
Management Utility Reference Guide.

Creating the Database Structure
To create the database structure, use the rb_creator utility on UNIX or the
dbcreate utility on Windows NT to initialize the database and create the
system tables. Then define a logical name for the database in the rbw.config
file. You should also change the default password for the database adminis-
trative account. Each of these tasks is described in this section.

Before you can create the database structure, you must install Red Brick
Decision Server and specify a locale for all databases in your installation. For
information about specifying a locale, refer to “Server Locale” on page 2-26
or to the Installation and Configuration Guide.
5-4 Informix Red Brick Decision Server Administrator’s Guide

Initializing the Database
Initializing the Database
Initialize a new database with the rb_creator utility on UNIX or the dbcreate
utility on Windows NT.

To initialize a new database

1. Log in as the redbrick user and change to the parent directory for the
location in which you want to create the database.

2. Create the database directory by entering:
$ mkdir dirname

where dirname is the pathname to the directory, such as
/disk1/database. The redbrick user must have access permissions to
create this directory, and the directory must be empty.

3. Verify that permissions are set correctly for this directory by
entering:

$ ls -l

Permissions on the directory should be:
redbrick: rwx (read, write, execute)
group: --- (none)
other: --- (none)

If permissions do not match these settings, verify that the umask
setting for the redbrick user is correct (077), and use the system chmod
command to set the permissions correctly.

4. Create the database by entering:
$ rb_creator dirname

where dirname is the name of the database directory you just created.

If this directory does not designate an empty directory or if you (as
the redbrick user) do not have sufficient write privileges, rb_creator
exits with an error message and does not create a new database.
Otherwise, rb_creator initializes the database by creating the database
system files listed in Figure 5-1 on page 5-7. ♦

UNIX
Creating a Database 5-5

Initializing the Database
To initialize a new database

1. Log in as the redbrick user and change to the parent directory for the
location in which you want to create the database.

2. Create the database directory by entering:
c:\> mkdir dirname

where dirname is the pathname to the directory, such as
c:\disk1\database.

3. Create the database by entering:
c:\> dbcreate -create -d dirname

where dirname is the name of the database directory you just created.

Running dbcreate initializes the database by creating the database
system files listed in Figure 5-1 on page 5-7.

When you use the dbcreate utility to initialize a database, you must fully
qualify the pathname for the database directory by including the drive letter.
For example:

c:\> dbcreate -create -l AROMA -d c:\disk1\new_db

The database pathname is added to the rbw.config file automatically. If you
edit the database section of this file, be sure that the pathname for each
database is fully qualified.

If you have two logical database names in the rbw.config file that refer to the
same physical database, the pathnames must be identical for the two entries.

When you delete a database with the dbcreate utility, you must specify the
pathname as it is listed in the rbw.config file. For example, suppose you have
the following entry in your rbw.config file:

DB AROMA f:\redbrick\aroma_db

When you delete this database, you must specify the exact pathname with
the dbcreate utility as follows:

c:\> dbcreate -delete -d f:\redbrick\aroma_db

♦

WIN NT
5-6 Informix Red Brick Decision Server Administrator’s Guide

Defining a Logical Database Name
When you run rb_creator on UNIX or dbcreate on Windows NT, the database
server initializes the database by creating the following database system files.

Tip: The database system file RB_DEFAULT_LOADINFO, which contains infor-
mation about load operations, is not created until a load operation occurs.

Defining a Logical Database Name
When you create a new database, assign it a logical database name in the
rbw.config file. Users then access the database by its logical database name.
The logical database name can be up to 128 characters in length.

To assign a logical database name

1. Open the rbw.config file for editing. The section to be edited is titled
“Logical database name mappings.” The file at your site might
contain other database names but looks similar to this:

Logical database name mappings
#
DB AROMA <dirname>

where <dirname> is equivalent to the full pathname; for instance,
/disk1/aroma/db on UNIX or c:\disk1\aroma\db on Windows NT.

Figure 5-1
Database System Files

System File Contents

RB_DEFAULT_IDX System tables

RB_DEFAULT_LOCKS System information for database and table locks

RB_DEFAULT_INDEXES System information about indexes

RB_DEFAULT_SEGMENTS System information about segments

RB_DEFAULT_TABLES System information about tables
Creating a Database 5-7

Changing the DBA Account Password
2. Insert a line having the following form after the Logical database
name mappings header:

DB database_name dirname

where:

You can also use the -l command line option of dbcreate to automatically add
the logical database name to the rbw.config file when you create your
database. ♦

Example

If you want to add a new database named NEW_DB, which is in the
<pathname> directory (for instance, /disk1/new_db on UNIX or c:\disk1\new_db
on Windows NT), add the following line to the rbw.config file:

DB NEW_DB <pathname>

If the file previously contained an entry only for the AROMA database, it
would now look like this.

Logical database name mappings
#
DB AROMA <pathname>
DB NEW_DB <pathname>

Changing the DBA Account Password
At the system level, the new database files are owned by the redbrick user. At
the database level, each new database is created with a single database user
account named system, with the default password manager. This user account
is a member of the DBA system role, with the authorization and privileges of
that role. Change the default password from manager to a secure password
immediately after creating the new database.

database_name Logical database name for new database; case
insensitive. (Users can access using uppercase,
lowercase, or a combination of both cases.)

dirname Full pathname to the database directory. (On
UNIX, this information is case sensitive.)

WIN NT
5-8 Informix Red Brick Decision Server Administrator’s Guide

Changing the DBA Account Password
To change the default password

1. Invoke the RISQL Entry Tool by entering the following at the prompt:
risql -d logical_database_name system manager

where logical_database_name refers to the new database.

2. Change the password by entering:
RISQL> grant connect to system with new_password;

A password can be any valid database identifier or string literal, as defined
in the SQL Reference Guide.

You can also use dbcreate to change the password of the system account by
specifying the -u and -p parameters when creating your database. ♦

Example

This example illustrates how to change the password for the user system from
the default password, manager, to the new password, mysecret.

$ risql -d new_db system manager
(C)Copyright 1991-1999, Informix Software, Inc.
All rights reserved
Version 6.0
RISQL> grant connect to system with mysecret;
RISQL> quit;
$

♦

c:\> risql -d new_db system manager
(C)Copyright 1991-1999, Informix Software, Inc.,
All rights reserved
Version 6.0
RISQL> grant connect to system with mysecret;
RISQL> quit;
c:\>

♦

WIN NT

UNIX

WIN NT
Creating a Database 5-9

Creating the Database Objects
Creating the Database Objects
After the database has been created with rb_creator on UNIX or dbcreate on
Windows NT, you can create segments, user tables, indexes, synonyms,
macros, and views. Each component of the table structure is created using a
CREATE statement.

To enter complex CREATE statements, write them in a text file to use as an
input script for the RISQL Entry Tool or RISQL Reporter. You can also enter
simple table organizations interactively from the RISQL Entry Tool command
line or with any tool that supports direct entry of SQL. The Manage Tables
function of the Administrator tool offers an easy method to create tables and
will write the SQL statements for you.

For information about using script files, refer to the RISQL Entry Tool and
RISQL Reporter User’s Guide. For information about writing CREATE TABLE
statements, refer to “Creating Tables” on page 5-12.

To create database objects

1. If you are using named segments for some or all of the tables or
indexes in the database, write the necessary CREATE SEGMENT
statements.

2. Write CREATE TABLE statements for the dimension (referenced)
tables. Use the MAXROWS PER SEGMENT and MAXSEGMENTS
parameters to specify the expected number of rows for each table.

3. Write CREATE TABLE statements for the fact (referencing) tables.

4. Write CREATE INDEX statements for any STAR indexes, additional
B-TREE indexes, or TARGET indexes that you have selected, as
described in “Creating Indexes” on page 5-15.

If you have written the CREATE statements in a script file, process
them by invoking the RISQL Entry Tool and reading the script file.

5. Write CREATE VIEW statements to provide the convenience and
security afforded by views.

6. Write any desired CREATE MACRO statements to simplify repetitive
query components or to share procedures.

For a complete description of the SQL syntax, refer to the SQL Reference Guide.
5-10 Informix Red Brick Decision Server Administrator’s Guide

Creating Segments
Creating Segments
The CREATE SEGMENT statement creates a storage segment consisting of one
or more PSUs that together will contain a table or index. If you plan to use
named segments, you must define them before you create the tables and
indexes. Segments can be modified as needed with an ALTER SEGMENT
statement. For information about modifying segments, refer to “Altering
Segments” on page 9-21.

The following rules about segments apply:

■ Named segments are created with the CREATE SEGMENT statement.
Default segments are created automatically when named segments
are not specified in CREATE TABLE or CREATE INDEX statements.

■ The default location for default segments is the database directory. If
you have multiple databases and want to specify a different default
directory for one or more of the databases, use a SET command to
define these locations rather than an rbw.config file entry for DEFAULT
DATA SEGMENT or DEFAULT INDEX SEGMENT.

■ Named segments for all tables and their primary key indexes are
assigned with the CREATE TABLE statement. Named segments for all
optional indexes are assigned with the CREATE INDEX statement.

■ Any table can reside in multiple segments, with data distributed by
the data values or by a hashing algorithm.

■ Each index on a table can reside in multiple segments. For primary
indexes, the index entries can be distributed among segments in the
same way as the indexed data (SEGMENT LIKE DATA) or by ranges
that are independent of the data distribution. For STAR indexes, the
index entries can be distributed sequentially among segments or
distributed by references to internal storage locations (SEGMENT BY
REFERENCES OF).

■ Segments can span multiple PSUs.

Exception: If you are using Red Brick Decision Server for Workgroups, each table or
index must reside in a single segment.
Creating a Database 5-11

Creating Tables
Disk space is first allocated to a segment based on the INITSIZE of the first PSU
in the segment (according to the PSU sequence ID in the RBW_SEGMENTS
table). Additional space is then allocated as data is stored in the PSU.
Segments with large INITSIZE values take longer to create (because the
INITSIZE space is being allocated) but are faster to load than segments with
smaller INITSIZE values.

Creating Tables
Each user table is defined in a CREATE TABLE statement with a name, a
description of the column (including name, data type, and special instruc-
tions), and optional primary key definition, foreign key definitions,
referential integrity action, segment identifiers, and the values for MAXSEG-
MENTS and MAXROWS PER SEGMENT (for tables that will participate in STAR
indexes).

Tables can be modified as needed with an ALTER TABLE statement. For infor-
mation about modifying tables, refer to “Altering Tables” on page 9-33. For
more information on data types, refer to the SQL Reference Guide. For infor-
mation on specifying fill factors for VARCHAR columns, refer to “Setting the
VARCHAR Column Fill Factor” on page 10-28 and to the SQL Reference
Guide.

Remember the following rules about creating tables:

■ A table containing a foreign key reference from another table must be
created before the table that references it.

■ An outboard table must be created before any tables that reference it.

Setting the MAXSEGMENTS and MAXROWS PER SEGMENT
Parameters
Informix recommends that you specify the expected total number segments
and total number of rows in a segment for a table as the MAXSEGMENTS and
MAXROWS PER SEGMENT value for that table. These values are used to build
a STAR index that can accommodate the expected growth of the dimension
tables that participate in it. If a MAXROWS PER SEGMENT value is not
provided on a referenced table, the STAR index creation will fail.
5-12 Informix Red Brick Decision Server Administrator’s Guide

Naming Constraints for Primary and Foreign Keys
Specifying MAXSEGMENTS and MAXROWS PER SEGMENT values larger than
the current (or expected) size of the dimension tables results in a STAR index
that is larger than necessary. You can perform the calculations described in
“Estimating the Size of Indexes” on page 4-23 using various values for
MAXSEGMENTS and MAXROWS PER SEGMENT to see what effect this
parameter has on the STAR index size.

The MAXSEGMENTS and MAXROWS PER SEGMENT values are also needed to
validate STAR index segmentation and to use the TMU Automatic Row
Generation option to maintain referential integrity.

The MAXROWS PER SEGMENT limit is affected by the fill factor settings for
VARCHAR columns. A fill factor setting that is too low might cause this limit
to be reached prematurely. If you receive an error message while inserting
rows into a table containing VARCHAR columns that the maximum number
or rows per segment has been reached, verify that the fill factor setting is
correct before you adjust the MAXROWS PER SEGMENT value. For more infor-
mation, refer to “Setting the VARCHAR Column Fill Factor” on page 10-28.

Naming Constraints for Primary and Foreign Keys
A constraint name is a logical name associated with a primary key or a
foreign key and is defined with the CONSTRAINT keyword in a CREATE
TABLE or ALTER TABLE statement. For multi-column foreign key references,
constraint names are required if the multi-column foreign key is referenced
in a STAR index. Although constraint names are optional for single-column
foreign keys and for primary keys, having meaningful constraint names can
make your CREATE TABLE statements more understandable to other people.
Constraint names are identified in the RBW_RELATIONSHIPS and
RBW_CONSTRAINTS system tables. If constraint names are not supplied, they
are given default names.

For more information on the CONSTRAINT keyword of the CREATE TABLE
statement, refer to the SQL Reference Guide.
Creating a Database 5-13

Maintaining Referential Integrity with ON DELETE
Maintaining Referential Integrity with ON DELETE
To maintain referential integrity during delete operations, you must consider
both table creation and delete operations on related tables. Referential
integrity is the relational property that each foreign key value in a table exists
as a primary key value in the referenced table.

The ON DELETE clause in the FOREIGN KEY clause of the CREATE TABLE
statement specifies how referential integrity is maintained during delete
operations. The ON DELETE clause has the following options.

The delete setting is stored in the DELACTION column of the system table
RBW_RELATIONSHIPS.

A delete operation cannot perform both cascaded and restricted deletes. A
NO ACTION reference anywhere in the complete family of a table (as defined
in “Delete Operations and Cascaded Deletes” on page 2-40) overrides any
CASCADE references in the family on a row-by-row basis. The behavior is as
if all references were NO ACTION.

For a specific delete operation, you can override the ON DELETE action
specified when the table was created by using the OVERRIDE REFCHECK
clause in the DELETE statement.

Warning: Although performance during delete operations is better when referential
integrity is not checked, use OVERRIDE REFCHECK only when you know deletions
will not violate referential integrity or when you plan to ensure referential integrity
by performing a REORG operation on the referenced table after the delete operation.

Option Description

CASCADE If a to-be-deleted row is referenced by a row or rows in another
table, both that row and the referencing row(s) are deleted. The
delete cascades through all affected tables to maintain referential
integrity.

NO ACTION If a to-be-deleted row is referenced by a row or rows in another
table, neither that row nor the referencing row(s) is deleted from
either table.This type of delete is also called a restricted delete.
However, a row that is not referenced by another row will be
deleted. (That behavior is the default if ON DELETE is omitted.)
5-14 Informix Red Brick Decision Server Administrator’s Guide

Creating Indexes
You can also change the ON DELETE action associated with the foreign key for
all future delete operations by using the ALTER TABLE statement to alter the
column.

To ensure that referential integrity is maintained in the most appropriate
manner for your database, be sure that you understand both actions and
select the most effective combination for all tables in your database.

Creating Indexes
A B-TREE index is automatically created on the primary key columns of a
table at table creation. You can create optional indexes to improve query
performance. Red Brick Decision Server has three types of index technol-
ogies: STAR indexes, TARGET indexes, and B-TREE indexes. For guidelines
about when to create additional indexes and when to use the various types
of indexes, refer to “Determining When to Create Additional Indexes” on
page 4-4. For further information on the CREATE INDEX statement, refer to
the SQL Reference Guide.

While an index is being built, the table can be read by other users but not
written. If an index is being built, database backup operations will not
backup that index and will issue a warning message to that effect.

You can create an index before data is loaded into the table, in which case the
index is built as the data is loaded, or you can create it later on a populated
table. You can drop any index at any time.

INDEX TEMPSPACE Parameters
Set the INDEX TEMPSPACE DIRECTORIES location to large empty disk parti-
tions to minimize the chances of running out of temporary space for offline
load and index-building operations. With multiple databases, this parameter
should specify a different location for each database.

The value specified for INDEX TEMPSPACE THRESHOLD determines the size
of the memory work area. For LOAD, REORG, and offline LOAD procedures,
the recommended settings work well. Customization can be helpful on some
systems.
Creating a Database 5-15

Parallel Indexes
For CREATE INDEX operations that create multiple indexes in parallel, the
amount specified by this parameter is distributed among all indexes.
Therefore, the operating system might run out of memory and swap space. If
you encounter out-of-memory errors when building indexes in parallel, try
building fewer indexes in parallel, reducing the INDEX TEMPSPACE
THRESHOLD value, or increasing the swap space.

The goal in selecting the INDEX TEMPSPACE THRESHOLD value is to select a
large value relative to the system on which Red Brick Decision Server is
running, but not so large a value that errors occur. Selecting too large a value
might cause the operation to fail with an out-of-memory error. Selecting too
small a value might cause poor performance.

For more information about INDEX TEMPSPACE parameters, refer to
“Estimating Temporary Space Values for Index-Building Operations” on
page 4-37.

Parallel Indexes
The CREATE INDEX statement provides a parallel-index-creation capability,
which allows multiple indexes to be built simultaneously on multiprocessor
hardware platforms. Although designed to improve performance on multi-
processor systems, the ability to create multiple indexes with a single
statement is convenient on any system.

Creating multiple indexes in parallel on a table with a single CREATE INDEX
statement is quicker on multiprocessor systems and often more convenient
than creating each index with a separate CREATE statement.

The ON ERROR clause specifies what happens if an error occurs while
multiple indexes are being built. You can specify that all index building stop
(ABORT) or that building continue for other indexes (CONTINUE) not affected
by the error.

UNIX
5-16 Informix Red Brick Decision Server Administrator’s Guide

Loading Tables with Indexes
After building multiple indexes in parallel with a single CREATE INDEX
statement, verify that all indexes were created successfully by checking the
DATETIME column in the RBW_TABLES or RBW_INDEXES system table. The
DATETIME column indicates NULL for each index under construction and the
time and date of completion for each index when it is complete. If the server
was not able to successfully complete an index, it deletes the index entry from
RBW_INDEXES automatically in many cases. However, if any index indicates
NULL for the DATETIME value after the CREATE statement completes,
manually remove that index entry from RBW_INDEXES with the DROP INDEX
statement. ♦

On Windows NT, you cannot use the CREATE INDEX statement to create
indexes in parallel. You can achieve the same effect by deferring the creation
of the index with a CREATE INDEX DEFERRED statement followed by a
REORG command. For syntax of the REORG command, refer to the Table
Management Utility Reference Guide. ♦

Loading Tables with Indexes
For large dimension tables (more than 10,000 rows) with user-defined
indexes, creating the indexes after the load process has completed is usually
more efficient than creating them before the load process.

For dimension tables with multiple indexes, it is usually faster to drop
indexes before loading data and then re-create the indexes using the parallel
indexes feature after the load operation is complete. This method also has the
advantage that the table is available for query while the indexes are being
built, although with lower query performance.

STAR Indexes
You can create one or more STAR indexes on any table that has foreign key
references. If the table has a more than one foreign key, you can create a
STAR index on any combination or subset of those foreign keys. A STAR index
can greatly improve query performance when you are using a star schema
design. For more information about STAR indexes, refer to “STAR Indexes”
on page 4-6.

WIN NT
Creating a Database 5-17

TARGET Indexes
TARGET Indexes
You can create a TARGET index on any column of a table. TARGET indexes can
improve performance on queries involving columns that have weakly
selective constraints. For example, if you have a column that has five possible
values and your query constrains on one of those five values, a TARGET index
can help you retrieve this information very efficiently. Furthermore, TARGET
indexes provide a fast way of counting the number of occurrences of a
weakly selective constraint. For more information about TARGET indexes,
refer to “TARGET Indexes” on page 4-10.

Creating Views
A view is composed of selected columns and rows from tables within a
database. Views allow simplification of queries and hiding of data. For
example, if a frequent query references only certain columns or rows, define
a view containing only those columns and rows. If some tables contain confi-
dential information, define views that include or exclude that data and grant
access on those views as appropriate.

A view can be created or dropped at any time, regardless of whether the
tables referenced by the view contain data. Any table referenced by a view
must exist at the time the view is created.

An optimized internal form of the view is built when it is defined. Therefore,
if a view includes a macro or a “SELECT * …” statement, the macro or SELECT
statement is expanded when the view is defined. Subsequent changes to the
macro or columns that are added to the table are not reflected in the view. A
view itself cannot be updated. That is, you cannot insert, update, or delete
rows in a view. Views reflect changes to the data in the tables on which they
are based.

If the text defining a view exceeds 256 bytes, multiple rows are inserted in the
system table RBW_VIEWTEXT. In views that include a macro, only the macro
name, not the expanded macro, is included in the character count.

If you are licensed for the Vista option, you can also create precomputed
views to automatically rewrite queries to access an aggregate table instead of
a detail table. For information about the Vista option, refer to the Informix
Vista User’s Guide.
5-18 Informix Red Brick Decision Server Administrator’s Guide

Creating Views
Example

Assume you want to limit access of the Customer table by sales representa-
tives to those customers in their own market areas, with managers having
access to multiple market areas. The relevant portion of the schema contains
the following tables and columns.

You can accomplish the desired restriction by creating a view for each user.

create view user1_list
as select * from customer
where market_id in

(select market_id from market_access, sales_rep
where sales_rep.auth_id = ’user1’
and sales_rep.repkey = market_access.rep_key);

Then grant SELECT privileges to each user for that user’s view. If you have
many users, however, this approach requires that you create and maintain
many individual views.

A more general view that uses the SQL CURRENT_USER (or USER) function to
restrict access is easier to maintain.

create view cust_list
as select * from customer
where market_id in

(select market_id from market_access, sales_rep
where sales_rep.auth_id = CURRENT_USER
and sales_rep.repkey = market_access.rep_key) ;

Then grant SELECT privileges for public access on the view cust_list.

grant select on cust_list to public ;

Figure 5-2

market_id

mkt_name
region
class
…

rep_key

auth_id
fullname
quota
year_to_date
…

Market table

Sales_rep table Customer table

cust_id

market_id

cust_name
address
…

rep_key

market_id

Market_access table
Creating a Database 5-19

Creating and Managing Macros
Sales representatives can then query the database as follows to see customers
in their own market areas:

select * from cust_list ;

The only customers displayed will be those in markets that the sales repre-
sentative has permission to access, as defined by the Market_Access table.

Creating and Managing Macros
The definition and use of macros is optional, but they can make writing SQL
statements easier for both the database administrator and the general user. A
macro can be defined to shorten lengthy character strings or to simplify
complex queries. A macro can also be generalized with parameters or nested
within another macro. Each person who writes SQL statements should
analyze the statements for patterns and similarities that could be simplified
or reduced by the use of macros.

Guidelines for Macro Definitions
Some general guidelines for macro definitions follow:

■ The definition string within each CREATE MACRO statement must be
less than 1024 characters.

■ A macro definition can include other macros unless the definition is
circular; that is, macro a includes macro b, and macro b includes macro
a. In such a case, an error message is issued when the macro is
expanded during execution.

■ A macro definition can include parameters, which generalize the
definition.

■ A macro definition can include a category and a descriptive
comment.

■ Macro definitions are stored in the TEXT column of the
RBW_MACROS system table. You can query the table to verify the
definition of a macro. You can also use the EXPAND statement to see
how a macro is expanded, including any parameter values.
5-20 Informix Red Brick Decision Server Administrator’s Guide

Availability and Scope
The CATEGORY and COMMENT values are stored in the corresponding
columns of the RBW_MACROS system table. The CATEGORY value is not used
by Red Brick Decision Server but is intended for use with application tools
supplied by other vendors. For example, the category might be used to
specify how the macro syntax fits into the full SQL statement syntax. The
COMMENT value can store a descriptive comment about the macro or other
information for use with application tools.

For a complete definition of the CREATE MACRO statement, refer to the SQL
Reference Guide.

Availability and Scope
The way in which a macro is defined determines its availability and scope.
Red Brick Decision Server supports the following types of macro definitions:

■ Public macros, which are available to all database users. These
macros can be defined only by users with DBA authorization and are
stored in the RBW_MACROS system table.

■ Private macros, which can be used only by the creator of the macro.
These macros can be defined only by users with DBA or RESOURCE
authorization and are also stored in the RBW_MACROS system table.

■ Temporary macros, which can be used only by the creator of the
macro. These macros can be defined by anyone and are available
only during the session in which they are defined. These macros can
be stored in .rbwrc files that are read in automatically each time a
session is started. For tools that start and end a new session for each
query, temporary macros are of limited use unless the CREATE
MACRO statements are stored in .rbwrc files.

The following table defines the macro definition rules and scope.

Macro Type Required Authorization For User Syntax

Public DBA (CREATE ANY task) All CREATE PUBLIC MACRO …

Private DBA or RESOURCE
(CREATE ANY or CREATE OWN task)

Creator CREATE MACRO…

Temporary CONNECT (any user) Creator CREATE TEMPORARY MACRO…
Creating a Database 5-21

Availability and Scope
The way in which macros are handled varies among the individual tools used
with Red Brick Decision Server. For information about macro use by a
particular tool, refer to specific Informix or vendor information about that
tool.

Macro references are resolved as follows:

■ If a temporary macro with the name exists, it is used.

■ If no temporary macro exists and if a private macro with the name
exists, the private macro is used.

■ If no temporary or private macro exists and a public macro with the
name exists, the public macro is used.

Examples

This example illustrates how a frequently used block of SQL code can be
replaced with a simple macro. A macro named std_select is defined to shorten
an often-repeated select list.

create macro std_select as
date_col, product, city, dollars
from period, product, market, sales
where period.perkey = sales.perkey
and product.prodkey = sales.prodkey
and market.mktkey = sales.mktkey ;

To use the following macro in a SELECT statement that finds sales data for San
Jose in 1998:

select std_select and year = 1998 and city =’San Jose’;

This example illustrates how frequently used blocks of similar instructions
can be replaced with a parameterized macro. A macro named std_constraint
is defined with two parameters to provide a general-purpose constraint for a
frequently asked query.

create macro std_constraint (yr, cty) as
year = yr and city = cty;

Tip: The parameter name should not match any text in the definition that you do not
want replaced with the parameter value. For example, the following definition, while
legal, defines a constraint that is always satisfied:

create macro std_constraint (year, city) as
year = year and city = city;
5-22 Informix Red Brick Decision Server Administrator’s Guide

Availability and Scope
To verify that a macro is defined correctly, check the definition by querying
the RBW_MACROS table. The macro identifier is stored as uppercase letters.

select name, text from rbw_macros
where name = ’STD_CONSTRAINT’;

NAME TEXT
STD_CONSTRAINT YEAR=%1 AND CITY=%2

To verify that a macro is expanded correctly, particularly when parameters
are used, check the macro expansion with the EXPAND statement.

expand std_constraint(1998, ’San Jose’);
STATEMENT
YEAR=1998 AND CITY=’San Jose’;

To use the parameterized macro in a SELECT statement to find 1998 sales data
for both San Jose and Miami:

select std_select and std_constraint (1998,’San Jose’);
...
select std_select and std_constraint (1998,’Miami’);
...

The following macro is defined to provide a single statement for these
frequently asked, similar queries. It contains two embedded, or nested,
macros.

create macro std_query (yr, cty) as
select std_select and std_constraint (yr, cty);

The following macro allows you to use a short statement to find the desired
sales data:

std_query (1998,’San Jose’);
std_query (1998,’Miami’);

For more examples of macro definitions, refer to the SQL Self-Study Guide.
Creating a Database 5-23

6
Chapter
Working with a Versioned
Database
In This Chapter . 6-3

Determining Whether You Need Versioning 6-4
Load Window 6-4
Increased Recoverability 6-4
Load with Periodic Commit 6-5
Dimension Table Cleaning 6-6
Costs of the Version Log. 6-6

Loading Data into Versioned Databases. 6-7

Understanding the Version Log 6-9
Structure of the Version Log 6-10
Versioned DELETE Operations 6-11

Understanding Frozen Versions 6-12

Controlling Versioning 6-14
Creating the Version Log 6-16
Dropping the Version Log and Adding Space 6-17
Controlling Frozen Versions 6-18

Freezing the Database 6-18
Overriding Frozen Versions 6-18
Unfreezing the Database 6-19
Unloading Data with Frozen Versions 6-19

Maintaining a Versioned Database 6-19
Monitoring the Version Log 6-19
Backup and Recovery 6-20

Controlling the Vacuum Cleaner 6-21

Example: Creating a Versioned Aroma Database 6-23

6-2 Infor
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
Versioned databases allow continuous availability, providing the database
administrator the capability to load or update the database at the same time
it is being queried by users and without impacting query performance. Each
transaction creates a new revision, or version, which is assigned a read
revision number when the previous transaction commits.

Use versioning to perform large loads during production hours, to facilitate
recovery in the event of an abort during a large load, or to periodically refresh
the database during the day. You can choose to provide the latest version of
the database to user queries or to provide the same version to all queries by
using the frozen version mode, thus ensuring consistent results in data
analysis while the revision is being loaded and verified.

The following topics are included in this chapter:

■ Determining Whether You Need Versioning

■ Loading Data into Versioned Databases

■ Understanding the Version Log

■ Understanding Frozen Versions

■ Controlling Versioning

■ Maintaining a Versioned Database

■ Controlling the Vacuum Cleaner

■ Example: Creating a Versioned Aroma Database
Working with a Versioned Database 6-3

Determining Whether You Need Versioning
Determining Whether You Need Versioning
Versioning provides the benefits of an increased load window, an increased
level of database recoverability, and the ability to add or modify small
amounts of data during production hours. If these factors are not important
to the operation of your database, you probably do not need to use
versioning. System costs associated with versioning are those related to the
storage space and maintenance of the version log. Also consider the effects
on load performance when determining whether to use versioning.

Load Window
The load window is the period when the database is not available for query
operations. When you perform a load operation, the database server blocks
read access to that table for the duration of the update. If your load window,
as determined by user requirements, is shorter than the time needed for
database maintenance, versioning might be appropriate for your system.You
can use versioning to decrease or eliminate the period of time when the
database is unavailable. This can be particularly useful for large load
operations.

Your user community will tell you how important availability is. If you have
users across several time zones, the time difference might mean that the
database needs to be available nearly all the time for all users to have access
during their business hours. In this case, versioning will enable you to
maintain availability. If you have only a small number of users who need
access only between the hours of 9:00 A.M. and 5:00 P.M., you might not want
to use versioning but instead perform database maintenance at night with
the database unavailable to users.

Increased Recoverability
When you run a transaction with versioning enabled, existing blocks in the
database are not directly modified. Modified blocks are written to the version
log, not to the database files. This has the benefit of providing complete
recoverability to the point when the transaction began because none of the
database files have been changed. The old revision of the database is
completely consistent during the transaction.
6-4 Informix Red Brick Decision Server Administrator’s Guide

Load with Periodic Commit
For example, consider a situation where you are loading data with versioning
enabled and the power fails in the middle of the operation. When the system
comes back up, the database is still operational and in the same state as before
the operation began. Any transactions that were in process during the power
failure are aborted, and the database is automatically returned to a consistent
state. You can then start the load operation again. If this happens without
versioning, the database might be left in an inconsistent state, requiring some
recovery action to make it operational.

Load with Periodic Commit
You might find it useful to load data with a periodic commit interval.
Loading incrementally in this manner can reduce the amount of data that you
must reload in the event of an abort in the middle of a large load and can also
be used to build trickle-feed applications.

Trickle-feed applications are useful if you have a steady stream of data, such
as a direct feed from an OLTP system, to load into a database, and you want
that data to become visible to users every so often without having to stop and
restart the load. Users can then analyze nearly real-time data.

For example, if a database stores information on stock ticker activity, you can
load new data in small batches at set intervals of 15 minutes. Without
versioning, you would have to disallow queries during that time, and the
database would be unavailable during much of the time the stock market is
open.

In the default mode, a versioned transaction completes an entire load
operation before the commit operation occurs. To build a trickle-feed appli-
cation, specify more frequent intervals at which a load operation commits
with commit interval settings. These intervals can be set to commit after a
specified number of rows have been loaded (SET TMU COMMIT RECORD
INTERVAL), after a specified time period has elapsed (SET TMU COMMIT TIME
INTERVAL), or both.
Working with a Versioned Database 6-5

Dimension Table Cleaning
You can also use the commit interval as a checkpoint mechanism for normal
versioned loads. Each time a load commits after a given commit interval, the
changes become visible to new users. If the load operation fails during the
next interval, it returns to the latest committed revision. For example, if you
are loading 1,000,000 rows with the TMU COMMIT RECORD INTERVAL set to
100,000 records and the load fails after loading 999,000 records, the load is
still complete to the last commit at 900,000 records. If you were performing a
normal versioned load that failed in such a manner, that transaction would
return to the state before any records were loaded.

For more information on the TMU COMMIT command, refer to the Table
Management Utility Reference Guide.

Dimension Table Cleaning
Versioning allows cleaning of data in dimension tables during production
hours. Dimension table cleaning might include deleting unused rows,
changing product descriptions or customer addresses, or adding rows
rejected by referential integrity checks during the initial load. Versioning
allows this data to be updated during production hours, allowing for a more
current set of data for the users.

Costs of the Version Log
The costs of the version log are relatively small. They include the following:

■ Disk space

To ensure good query performance, the version log should reside on
its own storage subsystem, preferably with several dedicated disk
drives. For information on configuring and sizing the version log,
refer to “Creating the Version Log” on page 6-16.

■ Additional I/O

When you modify a versioned database, all of the changed blocks are
first written to the version log. They are eventually rewritten back to
the database files, increasing the I/O. Entirely new blocks, as
opposed to modified blocks, are written to the database directly, not
to the version log. Versioned transactions that create new blocks
incur little additional I/O cost.
6-6 Informix Red Brick Decision Server Administrator’s Guide

Loading Data into Versioned Databases
■ The cost to administer the version log

Although it is not complex, it does add to the overall complexity of
your system.

The cost of versioning is low for load operations that add new table and index
data in new segments because these change few existing blocks in the
database and so few blocks are written to the version log. New data goes
directly to the table and index PSUs in the database. The version log is most
efficient when the number of blocks written to the version log is relatively
small. The more blocks that are written to the version log, the more blocks
will eventually be rewritten to the database files, thus increasing I/O.

Loading Data into Versioned Databases
Versioning does not directly effect TMU load performance although possible
I/O bottlenecks in accessing the version log after a versioned load might
affect system performance. Bottlenecks might occur because queries are
accessing data from the version log rather than from the database files at the
same time as the vacuum cleaner is reading the version log and users might
be modifying the database (writing to the version log).

The main factor affecting performance after a versioned TMU load is the
number of existing database blocks that change. If blocks are primarily new
and few are changed, the performance impact is negligible.

Because the TMU updates everything in the database necessary to keep it
consistent, consider all of the following when you analyze the number of
changed blocks from your TMU operation:

■ Existing rows in tables that change.

■ Any changes to referenced tables.

■ Any changes to indexes affected by the operation.
Working with a Versioned Database 6-7

Loading Data into Versioned Databases
Example 1

Consider a simple star schema with a single fact table that references three
dimension tables, as in the following figure.

Assume that the fact table (Fact1) is segmented by month. (These values
come from the Period table.) Assume also that there is a single STAR index
created on the three foreign keys of the Fact1 table and that the index is also
segmented by month. The only other indexes in this database are the primary
key B-TREE indexes of the three dimension tables.

Because of the segmentation of the fact table and the STAR index, when a new
month of data is loaded into this database, all the table data goes into a new
Fact1 table segment and all of the corresponding index data goes into a new
STAR index segment. Therefore, there is no changed data when a new month of
data is loaded.

This scenario creates no increase in I/O to the version log when data is loaded
in versioned mode because no table or index data is written to the version
log. The data is all written directly to the database files because it is new. Only
changed blocks are written to the version log.

Figure 6-1
Simple Star

Schema

Period

…

Product

…
Fact1

…

Market

…

6-8 Informix Red Brick Decision Server Administrator’s Guide

Understanding the Version Log
Example 2

Consider the same scenario as in the previous example, but with three
TARGET indexes on the fact table: one for each foreign key column. Unlike the
STAR index, these TARGET indexes are not segmented like the data and
therefore contain data for all time periods in the database. When you load the
new month of data, many blocks in the TARGET indexes change. Each of
those changed blocks are written to the version log. Because of the increased
I/O to the version log files, this operation might affect performance after the
transaction is committed.

You must weigh this cost with the benefits of performing a versioned load. If
your users demand 24 hour availability, 7 days a week, it might be worth the
extra overhead. However, if no one uses the system at night and the LOAD
operations easily complete during that downtime, you might want to lower
your overhead and perform blocking LOAD operations.

Understanding the Version Log
The version log stores blocks of data that have changed due to INSERT,
UPDATE, DELETE, and certain TMU operations. This allows you to store data
while you completely load and verify a new revision of the database. You can
make that revision available to the users after the entire load process is
complete or at periodic intervals, as described in “Load with Periodic
Commit” on page 6-5. You can also freeze the version available to users, as
described in “Understanding Frozen Versions” on page 6-12.

The data in the version log is merged into the database files by the vacuum
cleaner daemon, which then frees the space in the version log for reuse. For
more information on the vacuum cleaner, refer to “Vacuum Cleaner
Daemon” on page 1-13.
Working with a Versioned Database 6-9

Structure of the Version Log
Structure of the Version Log
The version log resides in a single segment that can contain up to 250 separate
physical storage units (PSUs). Each PSU maps to an operating-system file.
Physical storage of database files is divided into blocks. Each database block
in a Red Brick Decision Server uses 8 kilobytes of disk space. The following
figure shows a database with five blocks of data.

The first block in the database is named DB0, and the last block is named DB4.
If a query reads the whole database, it reads the blocks in the following order:

(DB0), (DB1), (DB2), (DB3), (DB4)

Suppose this database is versioned and therefore contains a version log.
When a transaction changes block DB0 of the database and commits the
change, the new version of that block is stored as revision number 1 of that
block in the version log.

Figure 6-2
Database Blocks

Figure 6-3
Version Log after
First Transaction

DB0

DB1

DB2

DB3

DB4

Database

DB0

DB1

DB2

DB3

DB4

Database
Version Log

(Block #, Revision #)

VL0,1
6-10 Informix Red Brick Decision Server Administrator’s Guide

Versioned DELETE Operations
Now if a query reads the whole database, it reads the following blocks:

(VL0,1), (DB1), (DB2), (DB3), (DB4)

If another transaction changes block 0 and block 2 of the database, the result
is as follows.

New transactions read the latest revision of the database. Because block 0
contains two revisions, the latest revision is revision number 2 in this
example. Therefore if a query reads the whole database, it reads the following
blocks:

(VL0,2), (DB1), (VL2, 2), (DB3), (DB4)

This explanation assumes the vacuum cleaner has not cleaned any blocks
throughout the duration of this example. If it had, those blocks would have
been moved from the version log to the database files. For more information
on the vacuum cleaner, refer to “Controlling the Vacuum Cleaner” on
page 6-21.

Versioned DELETE Operations
When performing DELETE operations on a versioned database, any deleted
blocks are treated as changed blocks and are written to the version log. If you
are deleting a small number of blocks relative to the number of blocks in a
segment or a table, this is fine. This type of versioned DELETE operation
allows users to query a table for the duration of the operation.

Figure 6-4
Version Log after

Second Transaction

DB0

DB1

DB2

DB3

DB4

Database
Version Log

(Block #, Revision #)

VL0, 1

VL0, 2

VL2, 2
Working with a Versioned Database 6-11

Understanding Frozen Versions
However, a versioned delete of a whole segment or table might perform
slowly because it creates a new version of each block that is deleted in the
version log, which must also subsequently be written to the database files.
This increases both the necessary size of the version log and the I/O for the
transaction. Furthermore, because the blocks in the table exist as empty
blocks, a subsequent load operation into that table will create yet another
version of each block in the version log.

Deleting everything in a table is better done as a nonversioned transaction or
with an ALTER SEGMENT CLEAR operation, a blocking (nonversioning)
operation that resets the segments to have no allocated blocks.

Understanding Frozen Versions
To ensure that all queries read the same revision of the database, use the
frozen version mode. This mode allows you to set the current version of the
database as the default read revision to be used by all subsequent queries. If
the version is not frozen, a query on a versioned database reads the latest
revision of the database at the time the query begins. Thus it is possible for
even closely timed queries to access different data sets due to changes caused
by updates in the interim, as the following example shows.

Example

Consider three queries that take place one minute apart. After the first query
begins, an UPDATE operation commits its changes to the database. After the
second query begins, another UPDATE operation commits its changes. Then
the third query begins. Without the frozen version feature, each of these
queries will access a different revision of the database, as illustrated in the
following figure.
6-12 Informix Red Brick Decision Server Administrator’s Guide

Understanding Frozen Versions
In this example, query 1 reads only the blocks in the database files, but query
2 and query 3 read some blocks from the database files and some from the
version log. Each query reads the latest committed revision of the database,
regardless of whether it currently resides in the database files, the version log,
or a combination of the two.

If you freeze the version with an ALTER DATABASE FREEZE QUERY REVISION
statement at or before 12:00, each subsequent query reads the same blocks,
(DB0), (DB1), and (DB2). This ensures consistent results.

In frozen version mode, only the following modifications can be made to the
database:

■ Versioning operations with SET LATEST VERSION ON.

■ Any operation on a TEMP table because these are local to the session.

■ Operations that do not affect existing database objects, such as
CREATE TABLE and CREATE SEGMENT.

Figure 6-5
Query Behavior without Frozen Versions

DB0

DB1

DB2

Database
Version Log

(Block #, Revision #)

DB0

DB1

DB2

Database

DB0

DB1

DB2

Database
Version Log

(Block #, Revision #)

VL0,1

Version Log
(Block #, Revision #)

VL0, 1

VL0, 2

VL2, 2

UPDATE operation #1
changes Block 0.

UPDATE operation #2
changes Blocks 0 and 2.12:00 12:01 Time

Query #1
(DB0), (DB1), (DB2)

Query #2
(VL0), (DB1), (DB2)

12:02

Query #3
(VL0,2), (DB1), (VL2,2)
Working with a Versioned Database 6-13

Controlling Versioning
Operations that will not work with frozen versions, include the following:

■ Any blocking INSERT, UPDATE or DELETE statement except those on
TEMP or MODEL tables

■ DROP TABLE or DROP INDEX, except on TEMP tables

■ ALTER TABLE DROP COLUMN or ALTER TABLE ADD COLUM

■ ALTER SEGMENT, except OFFLINE, RENAME, COMMENT or a nonat-
tached segment

■ Any blocking LOAD operation, such as an offline load, REORG, or
SYNCH STATEMENT

■ CHECK INDEX or CHECK TABLE

■ SQL-BackTrack checkpoint backup

To use these statements on a versioning database in frozen version mode, first
override frozen versioning with a SET LATEST REVISION ON command. For
more information on turning frozen versions on or off, refer to “Controlling
Frozen Versions” on page 6-18.

Controlling Versioning
In general, to create and enable a versioned database, complete the following
steps. Each of these steps is described in detail in the sections that follow.
Information on increasing the size of the version log and using the frozen
versions mode is also described in subsequent sections.

To create and enable a versioned database

1. Create the segment in which the version log will reside with a
CREATE SEGMENT statement.

2. Ensure that no users are connected to the database. If necessary, you
can perform an ALTER SYSTEM QUIESCE operation and ALTER
SYSTEM CANCEL USER SESSION operations.
6-14 Informix Red Brick Decision Server Administrator’s Guide

Controlling Versioning
3. Create the version log with an ALTER DATABASE CREATE VERSION
LOG statement.

This statement allocates all of the physical space for the version log,
so it might take some time to complete. All other users must be off
the system before you can execute this statement, and all other
connections to the database are refused while the version log is
initializing

4. Start versioning with an ALTER DATABASE START VERSIONING
statement.

This procedure sets up a versioned database. To run transactions as
versioned transactions, set versioning on by entering:

■ OPTION VERSIONING ON in the configuration file parameter

To control all user sessions

■ SET VERSIONING ON statement in your RISQL session

To control that specific user session

To run TMU operations as versioned transactions, set versioning on by
entering:

■ OPTION TMU_VERSIONING ON in the configuration file parameter

To control all user sessions

■ SET TMU_VERSIONING ON statement in the TMU control file

To control that specific user session

If these parameters are set to ON and no version log exists for the database or
if the database is not versioning enabled (by the ALTER DATABASE START
VERSIONING statement), any transaction that modifies the database will fail
with an error.
Working with a Versioned Database 6-15

Creating the Version Log
Creating the Version Log
Minor changes to data throughout the day do not require a large version log.
As the size of the version log and the query demands on the modified data
increase, configuration and sizing are more important.

The main performance cost of the version log is I/O because the data is first
written to the version log and then written back to the database by the
vacuum cleaner. To minimize the performance cost of the version log,
configure it on high-performance devices.

For maximum performance, Informix recommends that you locate your
version log in the following manner:

■ On a dedicated storage subsystem separate from the rest of the
database, ideally with several separate disk drives

■ With disk striping or RAID level-0 or level-1 devices

Placing the version log on several disks or on RAID devices allows
I/O to occur from several disks at one time, thus having little or no
performance impact on query operations.

Create the segment in which the version log will reside with a CREATE
SEGMENT statement. To ensure that the disk space is available, all of it will be
allocated when the version log is created. The amount of data that will be
written to the version log is directly related to the number of blocks in the
existing database that are modified. New blocks are not written to the version
log, they are written directly to the database files.

The size needed for the version-log segment is equal to the number of
changed blocks in your database (at 8 kilobytes per block), plus about 20
percent for overhead, to equal the total kilobytes, or MAXSIZE. This number
is difficult to estimate, however and Informix recommends that you set up a
realistic test database and measure it directly. For information on deter-
mining the size of your version log, refer to “Monitoring the Version Log” on
page 6-19.

There is little performance cost to overestimating the size of the version-log
segment. However, if you underestimate and it runs out of space during a
transaction, the transaction aborts. You lose the changes made by the
aborting transaction although the aborting transaction does not corrupt the
database.
6-16 Informix Red Brick Decision Server Administrator’s Guide

Dropping the Version Log and Adding Space
The vacuum cleaner daemon cleans a revision out of the version log when no
queries are accessing any previous revisions. Long-running queries prevent
cleaning and can increase the size of the version log. Frozen version mode
functions essentially as a long-running query and will likewise increase the
size of the version log.

Dropping the Version Log and Adding Space
To add space to the version log for a database, first drop it, and then create it
again, specifying a larger size, as in the following steps:

1. Stop versioning on the database by entering the following statement:
alter database stop versioning;

This disallows any new versioning transactions.

2. Wait until the vacuum cleaner finishes emptying the version log. The
version log is empty when the value of the CURRENT_REVISION
column in the DST_DATABASES table is equal to the value of the
LATEST_MERGED_REVISION column, as in the following example:

RISQL> select current_revision, latest_merged_revision
from dst_databases;

CURRENT_REV LATEST_MERG
1 1

3. Ensure that no users are connected to the database. If necessary, you
can perform an ALTER SYSTEM QUIESCE operation and/or ALTER
SYSTEM CANCEL USER SESSION operations.

4. Drop the version log.
alter database drop version log;

5. Add more space to the segment with ALTER SEGMENT operations,
increasing the specification of maximum physical storage unit.

6. Create the version log again, as in the following example:
alter database create version log in

version_log_segment;

7. Start versioning on the database again.
alter database start versioning
Working with a Versioned Database 6-17

Controlling Frozen Versions
Controlling Frozen Versions
Freezing the version causes the server to read the current revision number
and sets that number as the default read-revision number to be used by all
subsequent queries unless specifically overridden in a session. To freeze the
version, you must have the database administrator role, and you must first
enable versioning.

Warning: Freezing the current version will prevent all subsequent revisions from
being cleaned by the vacuum cleaner and increase storage space requirements of the
version log.

Freezing the Database

Freeze the database at the current revision with the following statement:

alter database freeze query revision

If the query revision is already frozen, the statement will fail. The frozen
version mode is persistent and will survive system failure and restart.

After this statement has executed, the database server will display the
revision number chosen to be the query revision. You can also view the read
revision number at any time in the QUERY REVISION column of the
DST_DATABASES table. If the revision is not frozen, the value of this column
is NULL. For the revision number of the database being accessed by the
current RISQL session, see the READ_REVISION column of the
DST_COMMANDS table.

Overriding Frozen Versions

To override the frozen version mode and use the current revision for a
specific user session, use the following SET command:

SET USE LATEST REVISION ON

To update a database while in frozen query mode, you must be using a
session that has this SET command ON.
6-18 Informix Red Brick Decision Server Administrator’s Guide

Maintaining a Versioned Database
Unfreezing the Database

To unfreeze the database for all user sessions, enter the following statement:

alter database unfreeze query revision

Unloading Data with Frozen Versions

The TMU unload operation essentially functions as a query. By default, the
TMU uses the latest revision when unloading tables rather than the current
query revision (frozen version). To specify the frozen version include the
USING QUERY REVISION option in the TMU UNLOAD statement. If there is no
frozen version, the UNLOAD statement will use the latest revision and will
not return a message.

You can also stop the server from automatically invalidating precomputed
views based on a table that is unloaded. To do so, use the SET AUTO
INVALIDATE PRECOMPUTED VIEWS command. For more information on
TMU commands, refer to the Table Management Utility Reference Guide.

Maintaining a Versioned Database
After you have a version log set up with all of the space allocated, little
maintenance is required. There are, however, several special considerations
for maintenance of a versioned database.

Monitoring the Version Log
It is a good idea to monitor the activity of the version log to determine
whether you have over- or under-allocated disk space. If you find you are
filling up the version log, consider allocating more space or reconfiguring it.
For information on adding space, refer to “Dropping the Version Log and
Adding Space” on page 6-17. For information on configuration, refer to
“Creating the Version Log” on page 6-16.
Working with a Versioned Database 6-19

Backup and Recovery
To monitor the space being used by the version log, refer to the following
columns of the DST_DATABASES table.

For more information, refer to “Monitoring Database Activity with Dynamic
Statistic Tables” on page 8-8.

Event log messages also provide monitoring information. When the version
log reaches a capacity of 90 percent, warning messages are sent to the event
log. For more information on event logs, refer to Chapter 8.

Backup and Recovery
If you are using SQL-BackTrack to back up a versioning database, the version
log is automatically emptied and no further steps are required. If you are
using a backup tool other than SQL-BackTrack on a versioning database,
Informix recommends that you drop the version log before you perform a
backup or restore operation, or when you copy or move a versioned
database. If the database has been corrupted such that the version log does
not empty itself, call Informix Customer Service. For instructions on
dropping the version log, refer to “Dropping the Version Log and Adding
Space” on page 6-17.

Column Name Description

VERSION_LOG_USED The amount of disk space (in kilobytes) used in the version log
for new versions of database blocks. NULL if version log does not
exist.

VERSION_LOG_AVAILABLE The amount of free disk space (in kilobytes) available in the
version log. NULL if version log does not exist.

VERSION_LOG_MAXIMUM_USED The maximum amount of disk space (in kilobytes) used in the
version log. Also known as the “high water mark.” Can be reset
with the ALTER SYSTEM RESET STATISTICS statement. NULL if
version log does not exist.
6-20 Informix Red Brick Decision Server Administrator’s Guide

Controlling the Vacuum Cleaner
If you choose not to drop the version log, you can instead perform the
following steps:

1. Make sure that no users are able to write to the database during the
backup operation. To do this, bring the database to quiescent mode
and either wait until current user sessions finish or close all user
sessions to stop activity on the database.

2. Check that the version log is empty by submitting the following
query:

select dbname from dst_databases
where current_revision <> latest_merged_revision

3. If the query returns any database names, wait for the version logs to
empty before beginning the backup operation. Repeat this step to
monitor the version logs until no database names are returned.

Warning: SQL-BackTrack waits for the vacuum cleaner to finish cleaning the version
log before performing a checkpoint backup. If the database revision is frozen, you
cannot perform a checkpoint backup.

Controlling the Vacuum Cleaner
The vacuum cleaner process moves the data committed in the version log to
the database files. There is one vacuum cleaner for each versioned database.
This operation is performed in the background. After data is committed to
the version log, the vacuum cleaner waits for any queries that are accessing
previous revisions of the data to complete and then writes the newly
modified data back to the database files. Then it frees the space in the version
log for use by new transactions.

In most situations, the vacuum cleaner can perform its work in the
background, cleaning out the version log without adversely affecting
anything else on the server. If you find it is having an impact, however, you
can use manual controls to start and stop the vacuum cleaner. Under normal
conditions, you should not stop the vacuum cleaner because it might cause
the version log to run out of space.
Working with a Versioned Database 6-21

Controlling the Vacuum Cleaner
If you perform a blocking transaction that modifies a versioned database (for
example, a LOAD operation with SET TMU VERSIONING OFF), the vacuum
cleaner cleans the version log before the transaction executes. The blocking
transaction then performs its work solely on the database files, not on the
version log.

Because the vacuum cleaner waits for queries to finish reading previous
versions before writing the new versions back to the database files, you might
notice that the vacuum cleaner is active on your system even when no one is
connected to the database.

To manually disable the vacuum cleaner, enter the following statement:

alter database stop cleaning;

This allows you to control when the cleaning occurs. Because it is an I/O
intensive process, it can potentially cause a performance bottleneck if there
are queries that also need to perform extensive of I/O on the same devices.

Warning: If you manually stop the vacuum cleaner, the version log might run out of
disk space. If this happens, the transaction is aborted, changes to the version log are
discarded, and the database remains in its previous state.

If you stopped the vacuum cleaner manually and want to start it back up
when the system is quiet, use the following statement:

alter database start cleaning;
6-22 Informix Red Brick Decision Server Administrator’s Guide

Example: Creating a Versioned Aroma Database
Example: Creating a Versioned Aroma Database
The Aroma sample database is installed when you install Red Brick Decision
Server. Aroma is a retail database with approximately 69,000 rows of data.
The following procedure enables versioning in the Aroma database:

1. Create the Aroma database. If you have deleted Aroma, re-create it
as described in Appendix A.

2. Create the segment in which the version log will reside. From the
RISQL prompt, enter the following statement:

RISQL> create segment versionlog
storage ’version.log’ maxsize 10000;

3. Create the version log in the new segment by entering the following
statement:

RISQL> alter database create version log in versionlog;

4. Start versioning by entering the following statement:
RISQL> alter database start versioning;

5. Enable versioned transactions globally with the OPTION
VERSIONING ON configuration file parameter or for a session with
the following statement:

RISQL> set versioning on;

You can now query and update the database concurrently.
Working with a Versioned Database 6-23

7
Chapter
Providing Database Access and
Security
In This Chapter . 7-3

Adding Database Users 7-4
Creating Operating-System Accounts for Users. 7-4
Granting Database Access 7-5
Changing Passwords 7-7

Granting Access with System Roles 7-7
DBA, RESOURCE, and CONNECT Capabilities 7-8
Granting and Revoking the DBA and RESOURCE

System Roles 7-9

Granting Database Object Privileges 7-9

Granting Access with Role-Based Security 7-11
Task Authorizations 7-12
Role Capabilities 7-14
Creating Roles 7-15
Granting Task Authorizations 7-16
Granting Object Privileges to Roles 7-17
Granting Roles 7-18
Revoking Task Authorizations, Object Privileges,

and Roles 7-22
Tracking Role Authorizations and Members 7-24

Administering Password Security. 7-27
Enforcing Password Changes 7-28
Warning Users of Password Expiration 7-30
Limiting Reuse of Previous Passwords. 7-31
Limiting Frequency of Password Changes 7-32
Enforcing Password Complexity and Length 7-33

7-2 Infor
Locking User Accounts After Failed Connection Attempts 7-36
Specifying the Lock-Out Period 7-36

Locked Account Status 7-37
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
After creating a database, the database administrator has access through a
single user account. In order to provide access to other users, the database
administrator needs to give them the ability to connect to the database and to
perform tasks within the database. To maintain security, the administrator
must decide which users can connect to the database and what database
actions they can perform. The administrator then implements the appro-
priate access scheme by creating database names and passwords and
assigning each user only the relevant capabilities.

This chapter discusses database access and security and includes the
following sections:

■ Adding Database Users

■ Granting Access with System Roles

■ Granting Database Object Privileges

■ Granting Access with Role-Based Security

■ Administering Password Security
Providing Database Access and Security 7-3

Adding Database Users
Adding Database Users
If the users at your site access the database via network-connected client
applications, you need not create operating-system accounts for those users.
However, if they access the database locally, via the RISQL Entry Tool or
RISQL Reporter running on the same computer, you need to create operating-
system accounts that provide individual login access to the system.

Before any user can access the database—via client tools, the RISQL Entry
Tool, or the RISQL Reporter—you must grant that user database access with
the SQL GRANT statement.

Creating Operating-System Accounts for Users
After Red Brick Decision Server has been installed and you are ready to add
users to the database, make sure that user accounts are set up so that:

■ The redbrick_dir/bin directory is in the path for each user.

■ The RB_CONFIG and RB_HOST environment variables are initialized
correctly and are accessible by each user.

■ The RB_PATH environment variable is initialized correctly and is
accessible by each user (in a single-warehouse database
environment) or each warehouse database has a logical name
definition in the rbw.config file.

The following lines illustrate path and environment variable settings in a
profile file for a Korn shell user account:

…
PATH=$PATH:/usr/redbrick_dir/bin;export PATH
RB_CONFIG=/usr/redbrick_dir; export RB_CONFIG
RB_HOST=RB_HOST; export RB_HOST
…

♦

UNIX
7-4 Informix Red Brick Decision Server Administrator’s Guide

Granting Database Access
After Red Brick Decision Server has been installed and you are ready to add
users to the database, make sure that:

■ The redbrick_dir\bin directory is in the path for each user. This should
always be true because the installation puts the redbrick_dir\bin
directory in the system path.

■ The following environment variables are set in the Windows NT
Registry for the Red Brick Decision Server service, which is under
HKEY_LOCAL_MACHINE\SOFTWARE\RedBrick\RedBrickWarehouse\
DefaultServer:

❑ RB_CONFIG

❑ RB_EXE

❑ RB_HOME

❑ RB_PATH

■ The RB_HOST environment variable is set either in the user
environment or in the Windows NT Registry. ♦

For more information about the environment variables, refer to Chapter 2,
“Key Concepts.”

No special permissions or privileges are required for RISQL Entry Tool or
RISQL Reporter user accounts. For more information about database access
from these tools, refer to the RISQL Entry Tool and RISQL Reporter User’s
Guide.

Granting Database Access
Whether users connect to the database via client tools, the RISQL Entry Tool,
or the RISQL Reporter, you must give each user database access by using the
SQL GRANT statement.

Tip: Some Red Brick ODBC Driver client applications, for example, Microsoft
Access and Visual Basic, require that you grant resource privileges with the SQL
GRANT statement for each Red Brick ODBC Driver-application user on your system.

WIN NT
Providing Database Access and Security 7-5

Granting Database Access
To add a new user to the database

1. Verify that the user has either a system account or access through a
client tool.

2. As the database administrator (or as member of the DBA system role
or a user with USER_MANAGEMENT task authorization), start a
RISQL session.

3. Use the SQL GRANT CONNECT statement to add the user name to the
database and assign a password. The user is authorized to connect to
the database, change (own) password, use PUBLIC macros, and
access PUBLIC tables. These tasks make up the CONNECT system
role.

4. Decide which database capabilities you want the user to have and
then use the GRANT statement to make the user a member of the
appropriate system role, to assign the appropriate object privileges,
and to grant privileges indirectly through assignment to a role.

These tasks are described in “Granting Access with System Roles” on
page 7-7, “Granting Database Object Privileges” on page 7-9, and
“Granting Access with Role-Based Security” on page 7-11.

Database users can be dropped from a database with the REVOKE CONNECT
statement.

For information about the GRANT, REVOKE, and CREATE ROLE statements,
refer to the SQL Reference Guide.

Examples

The following GRANT CONNECT statement creates the database username
drew and assigns the password instructor:

grant connect to drew with instructor ;

Now drew can connect to the database, change her own password, use
PUBLIC macros, and access PUBLIC tables. To perform any other operations,
the user drew must be granted the RESOURCE or DBA system role or object
privileges.

The following REVOKE CONNECT statement removes drew from the
database:

revoke connect from drew;
7-6 Informix Red Brick Decision Server Administrator’s Guide

Changing Passwords
Changing Passwords
With the GRANT CONNECT statement, database users can change their own
passwords and the database administrator can change the password for any
user. To change a password, simply specify the database username and
supply a new password.

A password can be any valid database identifier or string literal, as defined
in the SQL Reference Guide. Optional restrictions can be placed on passwords
by setting the password parameters in the configuration file. For more infor-
mation, refer to “Administering Password Security” on page 7-27.

Example

The following GRANT CONNECT statement changes the password for the
user drew to se2cure. Either drew or the database administrator can issue this
statement.

grant connect to drew with se2cure ;

Granting Access with System Roles
All Red Brick Decision Server databases have three predefined system roles:

■ The CONNECT system role allows users to connect to the database,
change their own passwords, use PUBLIC macros, and access PUBLIC
tables. Users become members of the CONNECT system role when
they are added to the database.

■ The RESOURCE system role includes the capabilities of the CONNECT
system role. It also allows users to create database objects and to
modify, drop, and grant access to those objects.

■ The DBA system role provides the capabilities of the CONNECT and
RESOURCE system roles. It also allows users to access and modify all
objects in the database and to affect the structure and security of the
database.
Providing Database Access and Security 7-7

DBA, RESOURCE, and CONNECT Capabilities
DBA, RESOURCE, and CONNECT Capabilities
The following table defines the actions permitted to members of the DBA,
RESOURCE, and CONNECT system roles, independent of any object
privileges.

For information about using role-based security to break down the tasks of
the system roles and recombine them in new roles, refer to “Granting Access
with Role-Based Security” on page 7-11.

Tasks Permitted

System Roles

DBA Resource Connect

GRANT/REVOKE system roles Yes No No

CREATE database objects Yes Yes No

ALTER database objects Yes Yes if object creator No

DROP database objects Yes Yes if object creator No

SELECT data Yes Yes if object creator No

Modify data Yes Yes if object creator No

GRANT/REVOKE object privileges Yes Yes if object creator No

LOCK the database Yes No No

BACKUP the database Yes No No

RESTORE the database Yes No No

UPGRADE the database Yes No No

REORG a table Yes Yes if table creator No

Perform offline loads Yes Yes if table creator and
using own segments

No
7-8 Informix Red Brick Decision Server Administrator’s Guide

Granting and Revoking the DBA and RESOURCE System Roles
Granting and Revoking the DBA and RESOURCE System
Roles
As a member of the DBA system role, you can use the GRANT statement to
grant the DBA and RESOURCE system roles to other database users. Granting
users the RESOURCE or DBA system role allows them to perform the tasks
assigned to those roles within the database.

As a member of the DBA system role, you can revoke the DBA and RESOURCE
system roles from a user at any time with the REVOKE authorization and role
statement. For more information about the GRANT and REVOKE statements,
refer to the SQL Reference Guide.

Examples

The following GRANT statement grants the RESOURCE system role to drew,
who has already been granted CONNECT. The database user drew will be able
to create database objects and access and modify these objects.

grant resource to drew ;

The following REVOKE statement removes the user bob from the DBA system
role:

revoke dba from bob ;

Granting Database Object Privileges
An object privilege allows a user to select or modify data from a specific
database object, such as a table. The five object privileges are as follows:

■ SELECT

■ INSERT

■ UPDATE

■ DELETE

■ ALL PRIVILEGES
Providing Database Access and Security 7-9

Granting Database Object Privileges
As a member of the DBA system role (or as a RESOURCE member and creator
of the object), you can use the GRANT statement to grant object privileges to
database users. Object privileges are granted to one or more specified users
or to all users, specified as PUBLIC. Users must be granted the CONNECT
system role and assigned a password before being granted object privileges.
Object privileges can be removed at any time with the REVOKE statement.

The following table defines the actions permitted on database objects for a
user who is a member of the DBA system role, created the object, and has been
granted object privileges, and for all others.

For a complete discussion of the GRANT and REVOKE statements, refer to the
SQL Reference Guide.

Example

This example illustrates how the user curly (with RESOURCE) can grant the
SELECT privilege on a table named t1 that he created to the user moe (who has
already been granted CONNECT).

grant select on t1 to moe ;

Object Privileges Permitted

Users

DBA Creator 1 Grantee PUBLIC

SELECT from object Yes Yes Yes No

INSERT into object Yes Yes Yes 2 No

UPDATE object Yes Yes Yes No

DELETE from object Yes Yes Yes No

Use PUBLIC macro Yes Yes N/A 3 Yes

1 Members of the RESOURCE system role have all object privileges on tables
they create.

2 To insert rows, users must have INSERT and SELECT privilege on the object.
3 NOT APPLICABLE.
7-10 Informix Red Brick Decision Server Administrator’s Guide

Granting Access with Role-Based Security
Granting Access with Role-Based Security
Role-based security is a feature that provides more control and flexibility in
managing users and their capabilities than do the predefined system roles.
With role-based security you not only have the predefined RESOURCE and
DBA system roles, but you also can grant separate tasks, recombine tasks in
new roles, and group database users in custom, or user-created, roles.

A user-created role can consist of any combination of the following:

■ Task authorizations, as defined in the table on page 7-12

■ Object privileges, as defined in “Granting Database Object Privi-
leges” on page 7-9

■ Database users

■ Other roles

After creating a role, you can grant it to additional users who are not already
members of that role. The grantee becomes a member of the role and has all
of its authorizations and privileges. You can alter a role at any time by
granting or revoking task authorizations, object privileges, users, and other
roles.

If a user is granted membership in a role, that user is a direct member of the
role. If a role (role1) is granted to another role (role2), the second role (role2) is
an indirect member of the granted role (role1).

In general, use the RESOURCE and DBA system roles and object privileges
whenever appropriate, and create and use custom roles only when your
database administration tasks and security would benefit from the added
flexibility.

This section discusses role-based security in terms of:

■ A list and description of the task authorizations

■ A description of role capabilities, with examples to illustrate role
flexibility

■ Creating roles
Providing Database Access and Security 7-11

Task Authorizations
■ Granting task authorizations to users and roles

■ Granting roles

■ Granting object privileges to roles

■ Revoking task authorizations, object privileges, and roles

■ Tracking role authorizations and members

Task Authorizations
The following table lists the task authorizations included in the DBA system
role.

Task Authorization Definition

ACCESS_ADVISOR_INFO Query the Advisor system tables. This is part of the Vista option. For
information about the Advisor, refer to the Informix Vista User’s Guide.

ACCESS_ANY Select data from all database objects and access private user information
(such as private macros) in the system tables.

ACCESS_SYSINFO Query the dynamic statistic tables for statistics about database activity.
For information about the dynamic statistic tables, refer to “Monitoring
Database Activity with Dynamic Statistic Tables” on page 8-8.

ALTER_ANY Alter columns, indexes, macros, segments, synonyms, tables, and views.

ALTER_SYSTEM Issue the ALTER SYSTEM statement to perform database adminis-
tration tasks.

BACKUP_DATABASE Back up the database.

CREATE_ANY Create any object, including those that use the resources of another user.
For example, create an index on the table of another user or create a table
that resides in the segment of another user.

DROP_ANY Drop objects created by any user.

EXPORT Grants authority to export the results of an arbitrary query to a user-
specified file with the EXPORT statement. This capability is intended
primarily for DBAs and system administrators, not the general user
community. This authorization allows the user to create files on the
database host system as the user under which the server is configured
(usually redbrick).

 (1 of 2)
7-12 Informix Red Brick Decision Server Administrator’s Guide

Task Authorizations
GRANT_TABLE Grant object privileges to database users and roles.

IGNORE_QUIESCE Grant object access to a quiesced database. Makes it possible to load data
or perform other administrative activities while the database is still in a
quiesced state.

LOCK_DATABASE Lock the database.

MODIFY_ANY Insert, update, delete, and load any data.

OFFLINE_LOAD Use any segment as a working segment for offline loads; synchronize
segments after offline loads.

PUBLIC_MACROS Create and drop PUBLIC macros.

REORG_ANY Reorganize any table or index.

RESTORE_DATABASE Restore the database.

ROLE_MANAGEMENT Create, drop, grant, revoke, and alter roles.

UPGRADE_DATABASE Upgrade the database.

USER_MANAGEMENT Create database users and change passwords with GRANT CONNECT.

Drop database users with REVOKE CONNECT.

Specify the default priority of a user’s sessions with ALTER USER or
GRANT CONNECT.

Task Authorization Definition

 (2 of 2)
Providing Database Access and Security 7-13

Role Capabilities
The following table defines the task authorizations included in the
RESOURCE system role.

Tip: You cannot grant task authorizations or object privileges to the DBA and
RESOURCE system roles because system roles cannot be altered. However, you can
grant a system role to a user-created role.

For the complete syntax of the GRANT authorization and role statement and
the ALTER SYSTEM statement, refer to the SQL Reference Guide.

Role Capabilities
In addition to the GRANT and REVOKE capabilities available with the
predefined system roles, you can also use role-based security to:

■ Grant a task authorization to one or more database users. For
example:

grant restore_database to db_user ;

■ Create a user-defined role. For example:
Create role table_select_role ;

■ Grant an object privilege to a user-created role. Any member of the
role then has the privilege. For example:

grant select on period to table_select_role ;

■ Grant a task authorization to a user-created role. Any member of the
role can then perform the task. For example:

grant upgrade_database to db_management_role ;

Task Authorization Definition

ALTER_OWN Alter own indexes, segments, and tables.

ALTER_TABLE_INTO_ANY Alter own tables into other users’ segments.

CREATE_OWN Create own objects (indexes, private macros, segments, synonyms,
tables, and views).

DROP_OWN Drop own objects.

GRANT_OWN Grant object privileges on own objects to other users.

TEMP_RESOURCE Create temporary tables.
7-14 Informix Red Brick Decision Server Administrator’s Guide

Creating Roles
■ Grant a user-created role to one or more database users. The users
then become direct members of the role. The user-created role can
consist of any combination of users, task authorizations, object privi-
leges, or other roles, or it can be empty. For example:

grant table_select_role to db_user1, db_user2,
db_user3 ;

■ Grant a user-created role to another user-created role. Each user-
created role can consist of any combination of users, task authoriza-
tions, object privileges, or other roles. For example:

grant table_select_role to marketing_role ;

Members of the marketing_role become indirect members of the
table_select_role and have all its capabilities.

■ Grant a system role to a user-created role. For example:
grant resource to marketing ;

All members of the marketing role become indirect members of the
RESOURCE system role and can perform the tasks of this role.

■ Revoke an object privilege from a user-created role. For example:
revoke select on period from table_select_role ;

■ Revoke a task authorization from a user-created role or a database
user. For example:

revoke upgrade_database from db_management_role ;

■ Drop a user-created role. For example:
drop role table_select_role ;

Creating Roles
Use the CREATE ROLE statement to create a role and optionally grant the role
to users and other roles. Listing users in a CREATE ROLE statement makes the
users direct members of the role. Each database user can be a direct member
of up to 16 roles.

After creating a role, use the GRANT authorization and role statement to
grant task authorizations and other roles to the new role and to grant the new
role to database users and other roles.

Use the GRANT privilege statement to grant object privileges to a role.
Providing Database Access and Security 7-15

Granting Task Authorizations
For complete syntax of the CREATE ROLE and GRANT statements, refer to the
SQL Reference Guide.

Example

The following CREATE ROLE statement creates the role security_management
and assigns chris and judy as direct members:

create role security_management for chris, judy ;

Granting Task Authorizations
Use the GRANT authorization and role statement to grant task authorizations
to database users and to user-created roles. Granting a task authorization to
a user allows the user to perform the task. Granting a task authorization to a
role allows all direct and indirect members of the role to perform the task.

Examples

The following GRANT statement allows users maria, john, and joe to upgrade
and restore the database:

grant upgrade_database, restore_database to maria, john, joe ;

The following example illustrates how to create a role for a group of users
and then grant task authorizations to the role:

1. Create the security_management role with users chris and judy as
direct members.

create role security_management for chris, judy ;

2. Grant the USER_MANAGEMENT, GRANT_TABLE, and
ROLE_MANAGEMENT task authorizations to the
security_management role.

grant user_management, grant_table, role_management
to security_management ;

Users chris and judy are direct members of the security_management role and
are able to manage database users, grant object privileges, and manage roles.
If necessary, the security_management role can later be granted to additional
users and to other roles.
7-16 Informix Red Brick Decision Server Administrator’s Guide

Granting Object Privileges to Roles
Granting Object Privileges to Roles
You can use the GRANT statement to grant an object privilege to a user-
created role. Granting an object privilege to a role provides all direct and
indirect members of the role with the privilege. For information about
granting object privileges to users and for a list of the object privileges, refer
to “Granting Database Object Privileges” on page 7-9.

For complete syntax of the GRANT privilege statement, refer to the SQL
Reference Guide.

Example

The following example illustrates how to create the roles table_select and
marketing and then grant the SELECT object privilege on four tables to the role
table_select.

If an empty role is granted to database users, the role consists only of the
users but has no specific tasks or privileges associated with it. Creating a role
with only a list of users is useful for grouping users so that you can assign
task authorizations or object privileges, either individually or as a role, to the
entire group of users all at once. For example, assume you want to assign
select privileges on several database tables to the members of the marketing
department. You could accomplish this with the following steps:

1. Create two roles. For example, table_select and marketing:
create role table_select ;
create role marketing ;

2. Grant object privileges to the table_select role.
grant select on period to table_select ;
grant select on product to table_select ;
grant select on market to table_select ;
grant select on sales to table_select ;

3. Grant the marketing role to a group of users.
grant marketing to db_user1, db_user2, db_user3,

db_user4 ;

4. Grant the table_select role to the marketing role.
grant table_select to marketing ;
Providing Database Access and Security 7-17

Granting Roles
Members of the marketing role become indirect members of the table_select
role and can access the Period, Product, and Sales tables.

You can add new employees to the marketing role, giving them all the capabil-
ities of that role with a single GRANT statement.

Granting Roles
Use the GRANT statement to grant roles to database users and to user-created
roles. Granting a role to a user makes the user a direct member of the role. The
user can perform all task authorizations and object privileges that have been
granted to the role. Each database user can be a direct member of up to 16
roles.

When a role is granted to a user-created role, all members of the role receiving
the grant become indirect members of the granted role and obtain all of its
capabilities. Each database user can be an indirect member of an unlimited
number of roles.

You cannot:

■ Grant a role to a system role.

However, you can grant a system role to a user-created role.

■ Grant a role to itself.

■ Create a role indirection cycle.

For example, if you grant role1 to role2, you cannot grant role2 to role1.

Figure 7-1
Indirect Granting of

Table_Select RoleMarketing Role

SELECT on period

SELECT on product

SELECT on sales

Table_Select Role

SELECT on market
7-18 Informix Red Brick Decision Server Administrator’s Guide

Granting Roles
Exercise caution when granting roles to users and other roles. You should
always know the privileges of each user. By granting roles to other roles, you
must keep track not only of the direct members but also of the indirect
members. You can use the system tables to monitor role membership, task
authorizations, and object privileges, as described in “Tracking Role Autho-
rizations and Members” on page 7-24.

For complete syntax of the GRANT authorization and role statement, refer to
the SQL Reference Guide.

Example

The following example illustrates how to create a role, grant task authoriza-
tions to the role, and then grant the role to a user. Suppose you need to allow
a database user to restore or upgrade a database whenever necessary. You can
create a role specifically for this purpose, grant that role only the necessary
task authorizations, and then grant the user membership in the role:

1. Create a role named database_management.
create role database_management ;

2. Grant the necessary subset of the DBA task authorizations, in this
example LOCK_DATABASE, RESTORE_DATABASE, and
UPGRADE_DATABASE, to the database_management role.

grant lock_database, restore_database,
upgrade_database to database_management ;

3. Grant this new role to the user who will have this responsibility.
grant database_management to db_user ;

The user db_user becomes a member of the database_management role and can
lock, restore, and upgrade the database.

Figure 7-2
Indirect

Membership in
Database_Manage

ment Role
db_user

LOCK_DATABASE

RESTORE_DATABASE

UPGRADE_DATABASE

Database_Management
Providing Database Access and Security 7-19

Granting Roles
With a single GRANT statement, you can later provide additional users with
all the capabilities of the database_management role when the tasks assigned to
it become too much for one person to handle.

Example

The following example illustrates how to create the marketing role to group
users in the marketing department and the object_management role to group
object management tasks, and then grant the object_management role to the
marketing role. All members of the marketing role become indirect members of
the object_management role.

1. Create the role marketing and make users sudhir, nasi, and cody direct
role members.

create role marketing for sudhir, nasi, cody ;

2. Create the role object_management.
create role object_management ;

3. Grant task authorizations to the object_management role.
grant alter_any, public_macros, access_any,

modify_any,drop_any, create_any to
object_management ;

4. Grant the object_management role to the marketing role, which makes
users sudhir, nasi, and cody indirect members of the
object_management role and allows them to perform all tasks granted
to this role.

grant object_management to marketing ;

Example

This example illustrates the concept of indirect role membership. Suppose
you have three roles in your database with the following direct members and
task authorizations.

As members of Role2, users Brian and Hedy can upgrade databases and
reorganize tables. If you grant Role1 to Role2, Brian and Hedy become indirect
members of Role1 and can now create and modify any objects. The reverse is
not true. Kirsten and Susan cannot upgrade databases or reorganize tables.
7-20 Informix Red Brick Decision Server Administrator’s Guide

Granting Roles
As members of Role3, Emily and Elena can access and alter any database
objects. If you grant Role2 to Role3, Emily and Elena become indirect members
of Role2. As members of Role2, they are also indirect members of Role1. Users
Emily and Elena can now create and modify any database objects and can
upgrade and reorganize databases, in addition to performing their Role3
tasks.

If you do not want to allow user Emily to create objects, you cannot simply
revoke the CREATE_ANY task authorization from Emily because Emily has
this task authorization only through membership in Role1. Instead, you have
the following choices:

■ Revoke Role3 from Emily, which would prevent her from performing
all tasks.

■ Revoke Role2 from Role3, which would remove the link to Role1.

■ Revoke Role1 from Role2, which would disallow direct and indirect
members of Role2 from performing Role1 tasks.

■ Revoke the CREATE_ANY task authorization from Role1.

Figure 7-3
Role Members and
Task AuthorizationsRole1

Kirsten
Susan

Members:

CREATE_ANY
MODIFY_ANY

Tasks:

Role2

Hedy
Members:

UPGRADE_DATABASE
REORG_ANY

Tasks:

Role3

Emily
Elena

Members:

ACCESS_ANY
ALTER_ANY

Tasks:

Brian
Providing Database Access and Security 7-21

Revoking Task Authorizations, Object Privileges, and Roles
Revoking Task Authorizations, Object Privileges, and Roles
Use the REVOKE authorization and role statement to revoke task authoriza-
tions and roles. Use the REVOKE privilege statement to revoke object
privileges. To remove a capability from a user, you must revoke each occur-
rence of the task or privilege from that user. For example, if a user has been
granted both a task authorization and a role that contains that task authori-
zation, you must revoke both the task authorization and either the role from
the user or the task authorization from the role.

You cannot revoke task authorizations from system roles. System roles
cannot be altered.

For the complete syntax of the REVOKE authorization and role and REVOKE
privilege statements, refer to the SQL Reference Guide.

Example

This example shows how a user might be granted a task authorization
multiple times and how to completely revoke the authorization from that
user. Assume the user Ken is first granted the UPGRADE_DATABASE task
authorization directly. Then Ken is granted the database_management role,
which has also been granted the UPGRADE_DATABASE task authorization.

If you do not want Ken to upgrade databases but are unsure if he has the
authorization to do so, check the RBW_USERAUTH table.

select grantee, grantor, upgrade_database
from rbw_userauth ;
GRANTEE GRANTOR UPGR
DATABASE_MANAGEMENT SYSTEM Y
KEN DBA Y

Revoke the UPGRADE_DATABASE task authorization from ken.

revoke upgrade_database from ken ;
7-22 Informix Red Brick Decision Server Administrator’s Guide

Revoking Task Authorizations, Object Privileges, and Roles
To see if user ken can still upgrade databases, check the RBW_USERAUTH
table again.

select grantee, grantor, upgrade_database
from rbw_userauth ;

GRANTEE GRANTOR UPGR
DATABASE_MANAGEMENT SYSTEM Y
KEN SYSTEM R

The R in the preceding results indicates that ken has the authorization
through a role. Revoke the database_management role from ken.

revoke database_management from ken ;

Query the RBW_USERAUTH table again to verify that ken can no longer
upgrade databases.

select grantee, grantor, upgrade_database
from rbw_userauth ;

GRANTEE GRANTOR UPGR
DATABASE_MANAGEMENT SYSTEM Y

If ken belonged to multiple roles or if multiple roles had this task authori-
zation, you would have to determine which role grants user ken the task
authorization and either eliminate his membership in that role or remove the
authorization from it.

Instead of revoking the database_management role from ken, you could revoke
UPGRADE_DATABASE from the database_management role. Either method
prevents ken from performing the task. However, keep in mind that revoking
a task from a role prevents all members of the role from performing the task.

Tip: A role is dropped from the database with the DROP ROLE statement. If you drop
a role, remember that role members might still have indirect task authorization for
some of the tasks of dropped role. For more information about dropping a role, refer
to “Roles” on page 9-56. For complete syntax of the DROP ROLE statement, refer to
the “SQL Reference Guide.”
Providing Database Access and Security 7-23

Tracking Role Authorizations and Members
Tracking Role Authorizations and Members
Query the system tables to determine the task authorizations, object privi-
leges, and roles that each user has been granted. The following table lists each
system table that you might want to query.

The following examples illustrate how to query the system tables to
determine the access rights within your database.

Examples

The following statement returns a list of all user-created roles in the database:

select name, creator
from rbw_roles
order by name ;
NAME CREATOR
DATABASE_MANAGEMENT SYSTEM
MARKETING SYSTEM
OBJECT_MANAGEMENT SYSTEM
SECURITY_MANAGEMENT SYSTEM
TABLE_SELECT SYSTEM

The following statement returns a list of all roles in the database with
members. The USERNAME column shows the users and roles that are
members of the roles listed in the ROLENAME column. The INDIRECT column
shows whether the user or role is an indirect member (Y) or direct member
(N).

select rolename, username, indirect
from rbw_role_members
order by rolename, username ;

System Table Information

RBW_ROLES Roles that exist in the database

RBW_ROLE_MEMBERS Members of each role

RBW_USERAUTH Task authorizations of each user and role

RBW_TABAUTH Object privileges of each user and role
7-24 Informix Red Brick Decision Server Administrator’s Guide

Tracking Role Authorizations and Members
ROLENAME USERNAME INDI
DATABASE_MANAGEMEN JOHN N
MARKETING CODY N
MARKETING NASI N
MARKETING SUDHIR N
OBJECT_MANAGEMENT CODY Y
OBJECT_MANAGEMENT MARKETING N
OBJECT_MANAGEMENT NASI Y
OBJECT_MANAGEMENT SUDHIR Y
SECURITY_MANAGEMEN CHRIS N
SECURITY_MANAGEMEN JUDY N

The following statement returns a list of all users and roles in the database
with task authorizations. It also lists each task authorization and shows
whether the user or role has the task authorization directly (Y), as a direct
member of a role (R), or as an indirect member of a role (I).

select grantee, dbaauth, resauth, user_management,
grant_table, role_management, alter_any, public_macros,
access_any, modify_any, drop_any, create_any,
lock_database,restore_database, upgrade_database,
alter_table_into_any,create_own, alter_own, grant_own,
isrole

from rbw_userauth
order by grantee ;
GRANTE DBAA RESA USER GRAN ROLE ALTE PUBL ACCE MODI DROP CREA LOCK REST UPGR
ALTE CREA ALTE GRAN ISRO
CHRIS N N R R R N N N N N N N N N N N N N N
CODY N N N N N I I I I I I N N N N N N N N
DATABASE_M N N N N N N N N N N N Y Y Y N N N N Y
JOE N N N N N N N N N N N N Y Y N N N N N
JOHN N N N N N N N N N N N R Y Y N N N N N
JUDY N N R R R N N N N N N N N N N N N N N
MARIA N N N N N N N N N N N N Y Y N N N N N
MARKETING N N N N N R R R R R R N N N N N N N Y
NASI N N N N N I I I I I I N N N N N N N N
OBJECT_MAN N N N N N Y Y Y Y Y Y N N N N N N N Y
SECURITY_M N N Y Y Y N N N N N N N N N N N N N Y
SUDHIR N N N N N I I I I I I N N N N N N N N
SYSTEM Y N Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y N
TABLE_SELE N N N N N N N N N N N N N N N N N N Y

The DBA_AUTH and RES_AUTH columns show whether the user or role has
been granted the DBA or RESOURCE system roles. The ISROLE column shows
whether the grantee is a role (Y) or a user (N).
Providing Database Access and Security 7-25

Tracking Role Authorizations and Members
Each task authorization column contains one of the following values.

The following statement returns a list of all users and roles with object privi-
leges in the database:

select grantee, grantor, tname, selauth, insauth, delauth,
updauth

from rbw_tabauth
order by grantee ;
GRANTEE GRANTOR TNAME SELA INSA DELA UPDA
MARIA SYSTEM PRODUCT N Y N N
TABLE_SELECT SYSTEM SALES Y N N N
TABLE_SELECT SYSTEM PERIOD Y N N N
TABLE_SELECT SYSTEM PRODUCT Y N N N
TABLE_SELECT SYSTEM MARKET Y N N N

Value Meaning

N User or role does not have the task authorization.

Y User or role has the task authorization directly.

R User or role has the task authorization through direct membership in a
role.

I User or role has the task authorization through indirect membership in a
role. In other words, the user is a member of a role that has been granted
a role with the task authorization.
7-26 Informix Red Brick Decision Server Administrator’s Guide

Administering Password Security
Administering Password Security
Password security features allow you, as the database administrator (or any
user with the USER_MANAGEMENT task authorization), to control the
longevity and content of database passwords. These features are controlled
by password parameters located in the rbw.config file. These parameters can
set up:

■ A password expiration period to control the age of passwords.

■ A warning message period to notify users of an impending
password expiration.

■ A restriction on the re-creation of old passwords to prevent users
from repeatedly using the same password.

■ A restriction on the frequency of password changes.

■ The required complexity and length of valid passwords.

■ A restriction on the number of times users can consecutively attempt
to connect to the database without success.

The database administrator can implement the appropriate password
security features by setting only the parameters that apply to that site or
database environment.

The database administrator (or any user with the USER_MANAGEMENT task
authorization) initially creates passwords for users by using the
GRANT CONNECT statement. To continually use the database, users must
comply with the configured password parameters, using the GRANT
CONNECT statement to change their own passwords as required. For the
syntax of the GRANT CONNECT statement, refer to the SQL Reference Guide.
Providing Database Access and Security 7-27

Enforcing Password Changes
The following table lists the password parameters and describes their
functions.

Enforcing Password Changes
You can force users to periodically change their passwords by setting the
PASSWORD EXPIRATION_DAYS parameter in the rbw.config file. This
parameter sets the maximum number of days passwords can exist before
user accounts expire. To avoid password expiration, users must change their
passwords with the GRANT CONNECT statement within the specified
number of days.

PASSWORD Parameter Description

EXPIRATION_DAYS Maximum number of days passwords exist. Forces users to
change their passwords regularly.

EXPIRATION_WARNING_DAYS The number of days prior to password expiration that the user
receives a warning message.

RESTRICT_PREVIOUS Minimum number of password changes that must occur before a
password can be reused. Forces users to use different passwords.

CHANGE_MINIMUM_DAYS Minimum number of days a password must exist before the user
can change it. Prevents users from changing their passwords
multiple times in quick succession in order to bypass the
parameter PASSWORD RESTRICT_PREVIOUS.

MINIMUM_LENGTH Minimum number of total characters required in each password.

COMPLEX_NUM_ALPHA Minimum number of alphabetic characters (A to Z, a to z)
required in each password.

COMPLEX_NUM_NUMERICS Minimum number of numeric characters (0 to 9) required in each
password.

COMPLEX_NUM_PUNCTUATION Minimum number of punctuation characters (for example,
!@#$%&) required in each password.

LOCK_FAILED_ATTEMPTS Maximum number of failed connection attempts allowed before a
user’s account is locked.

LOCK_PERIOD_HOURS Number of hours a user’s account is locked following failed
connection attempts.
7-28 Informix Red Brick Decision Server Administrator’s Guide

Enforcing Password Changes
Syntax

To specify a password expiration period, enter a line in the rbw.config file with
the following syntax.

Usage Notes

■ Users can change their passwords at any time before the expiration
date unless the PASSWORD CHANGE_MINIMUM_DAYS parameter is
set, which sets the minimum number of days that must pass before
users can change their passwords. If PASSWORD EXPIRATION_DAYS
and PASSWORD CHANGE_MINIMUM_DAYS are both set, users must
change their passwords after the minimum number of days have
passed and before the expiration date. For more information about
PASSWORD CHANGE_MINIMUM_DAYS, refer to “Limiting
Frequency of Password Changes” on page 7-32.

■ If an account expires, the user cannot connect to the database until
the database administrator (or any user with the
USER_MANAGEMENT task authorization) assigns a new password
with the GRANT CONNECT statement.

■ When an account expires, the user’s status changes from valid to
expired, as indicated in the RBW_USERAUTH system table. After the
database administrator has assigned a new password, the user’s
status reverts to valid. You can check the status of a user in the
RBW_USERAUTH table as follows:

select grantee, expired
from rbw_userauth
where grantee = ’user_name’ ;

PASSWORD num_daysEXPIRATION_DAYS

num_days Specifies the number of days passwords can exist before they
expire. This must be an integer in the range of 0 to 512. The
default is 0, which sets no restriction. Users need never change
their passwords. To compute a password expiration date, the
num_days value is added to the base value stored in the
PASSWORD_TS column in the RBW_USERAUTH system table.
Providing Database Access and Security 7-29

Warning Users of Password Expiration
Warning Users of Password Expiration
You can warn users that they must change their passwords before the
expiration date by setting the PASSWORD WARNING_DAYS parameter. This
parameter sets the number of days before the password expiration date that
users receive a warning message. (The message is displayed each time they
connect to the database.)

Syntax

To specify a password warning period, enter a line in the rbw.config file with
the following syntax.

Usage Notes

■ The value of the PASSWORD EXPIRATION_DAYS parameter must be
greater than the value of the PASSWORD WARNING_DAYS parameter.
If not, the PASSWORD WARNING_DAYS parameter is ignored, and the
expiration period value becomes the warning value. In this case,
users receive a warning message every time they connect to the
database.

■ If the PASSWORD EXPIRATION_DAYS parameter is not set, the
PASSWORD WARNING_DAYS parameter is ignored.

Example

Assume that the rbw.config file contains the following entries:

PASSWORD EXPIRATION_DAYS 30
PASSWORD WARNING_DAYS 5

PASSWORD num_daysEXPIRATION_WARNING_DAYS

num_days Specifies the number of days before password expiration that
users receive a warning message. This must be an integer in the
range of 0 to 512 days. The default is 0, which indicates no
warning message.
7-30 Informix Red Brick Decision Server Administrator’s Guide

Limiting Reuse of Previous Passwords
Users must create new passwords at least every 30 days. From the 26th to the
30th day in the life of their current passwords, each time they connect to the
database, they receive a warning message that their passwords will expire.

Limiting Reuse of Previous Passwords
You can limit the reuse of previous passwords by setting the PASSWORD
RESTRICT_PREVIOUS parameter in the rbw.config file. This parameter sets the
minimum number of password changes required before users can re-create
passwords.

Syntax

To limit the reuse of passwords, enter a line in the rbw.config file with the
following syntax.

Usage Notes

■ To prevent users from quickly changing their passwords in order to
re-create a password, set the PASSWORD CHANGE_MINIMUM_DAYS
parameter.

■ The PASSWORD RESTRICT_PREVIOUS restriction applies to the
database administrator (and to users with the USER_MANAGEMENT
task authorization) only with respect to their own passwords. They
can assign a user’s previous password to the same user at any time.

PASSWORD num_passwordsRESTRICT_PREVIOUS

num_passwords Specifies the number of password changes required before
users can re-create their passwords. This must be an
integer in the range of 0 to 128. The default value is 0,
which indicates no restrictions for re-creating old
passwords. For example, if this parameter is set to 5, users
must change their passwords 5 times before re-creating a
password.
Providing Database Access and Security 7-31

Limiting Frequency of Password Changes
Limiting Frequency of Password Changes
You can limit the frequency of password changes by setting the PASSWORD
CHANGE_MINIMUM_DAYS parameter in the rbw.config file. This parameter
sets the number of days that must pass between password changes.

Syntax

To limit the frequency of password changes, enter a line in the rbw.config file
with the following syntax.

Example

Assume the rbw.config file contains the following entries:

PASSWORD EXPIRATION_DAYS 60
PASSWORD RESTRICT_PREVIOUS 5
PASSWORD CHANGE_MINIMUM_DAYS 20

Users must create new passwords at least every 60 days. They cannot re-
create old passwords until they have created 5 subsequent passwords. After
changing their passwords, they must wait 20 days before changing
passwords again.

PASSWORD num_daysCHANGE_MINIMUM_DAYS

num_days Specifies the number of days that must pass between password
changes. This must be an integer in the range of 0 to 128. The
default is 0, which indicates no restriction on the frequency of
password changes.
7-32 Informix Red Brick Decision Server Administrator’s Guide

Enforcing Password Complexity and Length
Enforcing Password Complexity and Length
You can force users to create complex and secure passwords by setting any
combination of the PASSWORD MINIMUM_LENGTH parameter and the
complexity parameters.

The PASSWORD MINIMUM_LENGTH parameter sets the minimum number of
characters required in each password, while the complexity parameters set
the minimum number of alphabetic, numeric, and punctuation characters. (A
punctuation character is any printing character that is not a letter, a number,
or a space.) The complexity parameters areas follows:

PASSWORD COMPLEX_NUM_ALPHA
PASSWORD COMPLEX_NUM_NUMERICS
PASSWORD COMPLEX_NUM_PUNCTUATION

Syntax: MINIMUM_LENGTH

To set the minimum number of characters required in each password, enter a
line in the rbw.config file with the following syntax.

PASSWORD num_charactersMINIMUM_LENGTH

num_characters Specifies the minimum number of characters required in
each password. This must be an integer in the range of 0 to
128. The default is 0, which sets no restriction.
Providing Database Access and Security 7-33

Enforcing Password Complexity and Length
Syntax: COMPLEX_NUM_ALPHA

To set the number of alphabetic characters required in each password, enter
a line in the rbw.config file with the following syntax.

Syntax: COMPLEX_NUM_NUMERICS

To set the number of numeric characters required in each password, enter a
line in the rbw.config file with the following syntax.

PASSWORD num_alphaCOMPLEX_NUM_ALPHA

num_alpha Specifies the minimum number of alphabetic characters
required in each password. This must be an integer in the
range of 0 to 42. The default is 0, which sets no restriction.

PASSWORD num_numericsCOMPLEX_NUM_NUMERICS

num_numerics Specifies the minimum number of numeric characters
required in each password. This must be an integer in the
range of 0 to 42. The default is 0, which sets no restriction.
7-34 Informix Red Brick Decision Server Administrator’s Guide

Enforcing Password Complexity and Length
Syntax: COMPLEX_NUM_PUNCTUATION

To set the number of punctuation characters required in each password, enter
a line in the rbw.config file with the following syntax.

Usage Notes

■ You can set password complexity parameters without also setting
the PASSWORD MINIMUM_LENGTH parameter. The combined total
of the complexity parameters becomes the minimum required
length.

■ To enforce a minimum length that is different from the combined
total of the complexity parameters, the minimum length parameter
must be greater than the combined total. If the combined total
exceeds the minimum length value, the minimum length parameter
is ignored, and the combined total becomes the minimum required
length.

Examples

Assume the rbw.config file contains the following entries:

PASSWORD COMPLEX_NUM_ALPHA 4
PASSWORD COMPLEX_NUM_NUMERICS 2
PASSWORD COMPLEX_NUM_PUNCTUATION 2
PASSWORD COMPLEX_MINIMUM_LENGTH 10

PASSWORD num_punctuationCOMPLEX_NUM_PUNCTUATION

num_punctuation Specifies the minimum number of punctuation
characters required in each password. This must be an
integer in the range of 0 to 42. The default is 0, which sets
no restriction.
Providing Database Access and Security 7-35

Locking User Accounts After Failed Connection Attempts
When users create new passwords, the passwords must have at least 10
characters with at least 4 alphabetic, 2 numeric, and 2 punctuation characters.
The following GRANT CONNECT statements create valid passwords:

grant connect to craig with ’dbs1are2fun$%’ ;
grant connect to james with ’sq67lis%fu*%’ ;

The following GRANT CONNECT statements return error messages because,
given the above configuration, the passwords are invalid:

grant connect to maria with dbuser ;
grant connect to prema with perfor12mance ;

Locking User Accounts After Failed Connection Attempts
You can limit the number of times users can incorrectly enter their passwords
by setting the PASSWORD LOCK_FAILED_ATTEMPTS parameter. This
parameter sets the number of consecutive failed connection attempts allowed
before user accounts are locked. The count of failed connection attempts is
reset for a given user each time that user successfully connects to the
database.

Syntax

To limit the number of times users can incorrectly enter their passwords,
enter a line in the rbw.config file with the following syntax.

PASSWORD num_attemptsLOCK_FAILED_ATTEMPTS

num_attempts Specifies the number of failed connection attempts allowed
before user accounts are locked. This must be an integer in
the range of 0 to 128. The default is 0, which indicates no
restriction on the number of incorrect entries.
7-36 Informix Red Brick Decision Server Administrator’s Guide

Specifying the Lock-Out Period
Specifying the Lock-Out Period
You can specify the duration of a locked account by setting the PASSWORD
LOCK_PERIOD_HOURS parameter. This parameter sets the number of hours
accounts are locked following a lock-out caused by failed connection
attempts. After the configured number of hours has passed, users can
connect to the database with the same password.

Syntax
To specify the duration of the lock-out period, enter a line in the rbw.config file
with the following syntax.

Locked Account Status

If an account is locked, the user cannot connect to the database until the
database administrator has assigned a new password or until the number of
hours set in the PASSWORD LOCK_PERIOD_HOURS has passed.

PASSWORD num_hoursLOCK_PERIOD_HOURS

num_hours Specifies the number of hours accounts are locked following a
lock-out caused by failed connection attempts. This must be an
integer in the range of 0 to 128. The default is 0, indicating an
indefinite lock-out period. If this parameter is set to 0 and an
account is locked, the database administrator (or any user with
the USER_MANAGEMENT task authorization) must assign a
new password.
Providing Database Access and Security 7-37

Syntax
When an account is locked, the user’s status changes from valid to locked,
which is indicated in the RBW_USERAUTH system table. After the database
administrator has assigned a new password, the user’s status reverts to valid.
You can check the locked status of a user in the RBW_USERAUTH table with
the following query:

select grantee, locked
from rbw_userauth
where grantee = ’user_name’ ;
7-38 Informix Red Brick Decision Server Administrator’s Guide

8
Chapter
Managing Database Activity in
an Enterprise
In This Chapter . 8-5

Task Authorizations for Managing Database Activity 8-6

Administration Database 8-6

Monitoring Database Activity with Dynamic Statistic Tables 8-8
Read and Write Statistics 8-9

Definition of Read Statistics 8-9
Definition of Write Statistics 8-11
Platform Dependency 8-11

Controlling Database Activity 8-12
Bringing a Database to a Quiescent State 8-12
Activating a Database 8-13
Resetting Accumulated Statistics. 8-13
Canceling a User Command 8-13
Closing a User Session 8-14
Changing User Priorities for the Current Session 8-14

Administration Daemon Process 8-15
Statistics Collection Interval 8-16
DST Refresh Interval 8-17

Event Logging . 8-18
Logging Subsystem 8-18

Log Daemon 8-18
Log Viewer 8-20

Event Log Messages 8-24
Event Severity 8-24
Event Category 8-25
Audit Events 8-25

8-2 Infor
Error Events 8-25
Operational Events 8-26
Schema Events 8-26
Usage Events 8-26

Log Files . 8-27
Configuring the Logging Subsystem 8-28

Setting the Startup State 8-28
Specifying the Location of Log Files 8-28
Specifying the Maximum Log File Size 8-29
Setting the Log Severity Filter Level 8-30
Controlling Logging Operations. 8-30
Starting Logging 8-31
Stopping Logging. 8-31
Switching Log Files 8-31
Changing Log Filter Levels 8-31
Terminating the Log Daemon. 8-31

Query Logging 8-32

Controlling Advisor Logging 8-32
Advisor Log Files 8-32
What the Advisor Logs 8-33
Starting and Stopping the Advisor Log. 8-34

ADMIN ADVISOR_LOGGING 8-34
ALTER SYSTEM 8-35
SET ADVISOR LOGGING. 8-36

ADMIN ADVISOR_LOG_DIRECTORY 8-37
ADMIN ADVISOR_LOG_MAXSIZE 8-38
SET UNIFORM PROBABILITY FOR ADVISOR. 8-39

Accounting . 8-39
Accounting Process 8-40
Format of Accounting Records 8-41
Accounting Files 8-41
Configuring Accounting 8-43

Setting the Startup State 8-43
Specifying the Location of Accounting Files. 8-43
Specifying the Maximum Accounting File Size. 8-44
Setting the Accounting Mode. 8-44

Controlling Accounting 8-45
Starting Accounting 8-45
Stopping Accounting 8-46
mix Red Brick Decision Server Administrator’s Guide

Switching Accounting Files 8-46
Changing Accounting Mode 8-46
Managing Database Activity in an Enterprise 8-3

8-4 Infor
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
Although enterprise scenarios differ from case to case, they often share some
characteristics:

■ Multiple Red Brick Decision Server installations on different
platforms

■ Duplication of data over multiple databases

■ Relatively high number of users accessing the database

■ Users with varying levels of expertise accessing the database

■ Users from different departments accessing the database

Database administration tasks associated with these scenarios include:

■ Monitoring and controlling contention for database resources (for
example, CPU time, database tables, disk I/O)

■ Determining the level of database use by user or department in order
to implement a charge-back accounting system

■ Copying data between tables in different database installations

For information on moving data among servers, refer to the copy
management utility, rb_cm, in the Table Management Utility Reference
Guide.

To accomplish these tasks, the database administrator must be able to
monitor the database activity of users, their sessions, and the queries issued
by those sessions; identify resource contention, misuse of the system, or
queries that are consuming too many resources; and perform actions to
control database activity.
Managing Database Activity in an Enterprise 8-5

Task Authorizations for Managing Database Activity
This chapter describes the tasks involved in monitoring, controlling, and
tracking resource use of Red Brick Decision Server. It includes the following
sections:

■ Task Authorizations for Managing Database Activity

■ Administration Database

■ Monitoring Database Activity

■ Controlling Database Activity

■ Administration Daemon Process

■ Event Logging

■ Controlling Advisor Logging

Task Authorizations for Managing Database Activity
To monitor and control database activity, a user must have two task authori-
zations: the ACCESS_SYSINFO and ALTER_SYSTEM authorizations. The DBA
system role includes these authorizations. For more information on task
authorizations, refer to Chapter 7, “Providing Database Access and Security.”

Users with the ACCESS_SYSINFO authorization can monitor activity on the
database to which they are currently connected. Users with the
ALTER_SYSTEM authorization can control the use of the database to which
they are currently connected.

Administration Database
The administration database is used by the database administrator to
monitor and control all of the databases within an enterprise. When you
install Red Brick Decision Server with the installation script, the script asks
whether you want to create the administration database. Informix recom-
mends that you install it. The installation script builds the administration
database in a subdirectory of the installation directory named admin_db.
8-6 Informix Red Brick Decision Server Administrator’s Guide

Administration Database
As its name suggests, the administration database is for administrative
purposes only. The database contains only system tables, and you cannot
create any segments or tables in it. It provides the following capabilities:

■ A user who has ACCESS_SYSINFO authorization for the adminis-
tration database and is connected to that database can obtain
database activity statistics for all databases.

■ A user who has ALTER_SYSTEM authorization for the administration
database and is connected to that database can perform adminis-
trative actions on all warehouse databases.

The following figure illustrates the role of the administration database.

Figure 8-1
Role of Administration Database

Database 1

Database 2

Database 3

Monitor and
Control

Connection

Connection

Monitor and
Control

Monitor and
Control

DBA

DBA

DBA

Administration DBA

ADMIN
Database

Red Brick Decision Server Environment

Connection

Monitor and
Control

Connection
Managing Database Activity in an Enterprise 8-7

Monitoring Database Activity with Dynamic Statistic Tables
Monitoring Database Activity with Dynamic
Statistic Tables
Statistics on the activity associated with each active database in the server are
available through a set of dynamic statistic tables (DSTs). The database
administrator can monitor database use by querying the DSTs. DSTs are
nonpersistent—that is, they are not stored anywhere on disk but held and
periodically updated in memory. Although the DSTs do not exist on disk, they
appear as entries in the RBW_TABLES system table. These entries allow front-
end tools to perform queries against the DSTs. The dynamic statistic tables are
as follows:

■ DST_DATABASES

■ DST_USERS

■ DST_SESSIONS

■ DST_COMMANDS

■ DST_LOCKS

For column names and descriptions of each table, refer to Appendix C,
“System Tables and Dynamic Statistic Tables.”

Users with ACCESS_SYSINFO authority on the current database can retrieve
the rows in the DSTs that are relevant to that database. Users who have
ACCESS_SYSINFO authority on the administration database and are
connected to that database can retrieve information from the DSTs on all
databases for which the administration daemon has information.

The administration daemon holds information only on those databases that
have been accessed at least once since the administration daemon was
started. Similarly, the administration daemon holds information only on
those users who have accessed a database at least once since the adminis-
tration daemon was started. For more information on the administration
daemon, refer to “Administration Daemon Process” on page 8-15.

Tip: You can define views on the DSTs consisting of useful subsets of the table
columns.
8-8 Informix Red Brick Decision Server Administrator’s Guide

Read and Write Statistics
Read and Write Statistics
Many of the DSTs contain the following I/O statistics:

■ Cache reads and writes

■ Logical reads and writes

■ Physical reads and writes

These statistics are important but easily misinterpreted. Therefore, they are
defined here.

Definition of Read Statistics

Consider the case in which a session must read data. It first determines the
location of that data (the particular block) and attempts to lock the block. The
server process checks that the required block is already in the local buffer
cache. If the block is there (that is, if the data has already been read into the
local buffer cache for use by the session), the block is locked, and the cache
read statistic is incremented by one. Subsequent reads of individual rows in
the locked block do not affect the cache read statistic because this statistic
counts only block read requests. If the required block is not already in the local
buffer cache, however, a logical read request is issued by the session, and the
logical read statistic is incremented.

A logical read is a call to the operating system to read a block of data. If the
data exists in an operating-system buffer, no physical read to disk is required.
If the data does not exist in an operating-system buffer, the operating system
performs a read from disk, and the physical read statistic is incremented.
Managing Database Activity in an Enterprise 8-9

Read and Write Statistics
The following figure illustrates how cache read, logical read, and physical
read statistics are generated.

The sum of the cache reads and the logical reads is the total number of block
read requests by the session. The ratio of the cache read requests to the total
number of block read requests represents the ratio of cache buffer hits.

Tip: System table reads bypass the local buffer cache and are not reported. However,
these reads represent a very small fraction of the total, so they should not significantly
affect the overall cache hit rate.

Figure 8-2
How Read Statistics are Generated

Operating-System ControlServer Control

Local buffer
cache

Operating-system
buffer cache

Disk

Logical read statistic
incremented (twice)

Block read
requests

Cache read statistic
incremented (once)

Physical read statistic
incremented (once)
8-10 Informix Red Brick Decision Server Administrator’s Guide

Read and Write Statistics
Definition of Write Statistics

When a process needs to perform a write, it attempts to lock the appropriate
block in memory. Consider the following cases:

■ The block is not in the local buffer cache. In this case, the server must
read the block from disk. The server process can then lock the block
for writes. When the server is finished writing to this block, it must
eventually write the block back to disk, so the logical write statistic
is incremented by one.

■ The block is in the local buffer cache and has not been written to. In
this case, the server process can lock the block for writes. Again the
server must eventually write the block back to disk, so the logical
write statistic is incremented by one.

■ The block is in the local buffer cache and is dirty—that is, the block
has already been written to. The server process can lock the block to
perform additional writes. Because the logical write statistic was
incremented for the original writes, this statistic is not incremented.
Instead the cache write statistic is incremented by one.

Platform Dependency

When a logical read or write is performed, the operating system usually
performs a corresponding physical read or write to disk. However, the
physical I/O data is kept by the operating system, so the availability of these
statistics is platform dependent.
Managing Database Activity in an Enterprise 8-11

Controlling Database Activity
Controlling Database Activity
To control database activity, use the ALTER SYSTEM statement. Users with
ALTER_SYSTEM authorization can execute the ALTER SYSTEM statement to
control use of the current database. Users with ALTER_SYSTEM authorization
on the administration database who are connected to the administration
database can use the ALTER SYSTEM statement to control use of all databases
in the warehouse.

With the ALTER SYSTEM statement, a user with the necessary authority can
perform the following operations:

■ Bring a database to a quiescent state

■ Activate a database

■ Reset accumulated statistics

■ Cancel a user command

■ Close a user session

■ Change user priority for current sessions

The following sections describe all of these operations. For a complete
description of the ALTER SYSTEM syntax, refer to the SQL Reference Guide.

Bringing a Database to a Quiescent State
You can use the ALTER SYSTEM QUIESCE DATABASE statement to bring a
database to a quiescent state. In this state, the database does not allow any
new sessions or any new commands for existing sessions, but currently
executing commands are allowed to complete.

Use this statement as preparation for shutting down the rbwapid daemon
process. The quiescent state is also useful for performing maintenance tasks
such as disk drive maintenance.

Important: A user with the IGNORE_QUIESCE task authorization can perform
actions on a quiescent database, thus overriding another user’s ALTER SYSTEM
QUIESCE DATABASE statement. All users with the DBA system role automatically
have the IGNORE_QUIESCE task authorization.
8-12 Informix Red Brick Decision Server Administrator’s Guide

Activating a Database
Activating a Database
You can use the ALTER SYSTEM RESUME DATABASE statement to bring a
database to normal working mode.

The RESUME DATABASE clause must be issued by an existing session
(because you cannot start a new session on a quiescent database) or by a user
who is connected to the administration database and has ALTER SYSTEM
authorization for that database.

Resetting Accumulated Statistics
You can use the ALTER SYSTEM RESET STATISTICS statement to reset all the
DST statistics for a database to zero.

Canceling a User Command
You can use an ALTER SYSTEM CANCEL USER COMMAND statement to cancel
the currently executing statement for a specific session. You can also cancel
the currently executing statements for:

■ All sessions for a specific user on a specific database

■ All sessions for all users on a specific database

If you have the ALTER_SYSTEM authority on the administration database,
you can cancel the currently executing statements for:

■ All sessions for a specific user on all databases

■ All sessions for all users on all databases

If a session is not executing a command, the ALTER SYSTEM CANCEL
COMMAND statement is ignored.
Managing Database Activity in an Enterprise 8-13

Closing a User Session
Closing a User Session
You can use the ALTER SYSTEM CLOSE USER SESSION statement to terminate
a specific session. You can also terminate:

■ All sessions for a specific user on a specific database

■ All sessions for all users on a specific database

If you have the ALTER_SYSTEM authority on the administration database,
you can terminate:

■ All sessions for a specific user on all databases

■ All sessions for all users on all databases

When you use this option to terminate a session, any statements that the
session is currently executing are canceled, and a message is sent to the
session stating that the session was terminated by an operator action.

Changing User Priorities for the Current Session
You can use the ALTER SYSTEM CHANGE USER PRIORITY statement to change
the priority of a specific session. You can also change the priorities of:

■ All sessions for a specific user on a specific database

■ All sessions for all users on a specific database

If you have the ALTER_SYSTEM authority on the administration database,
you can change the priorities of:

■ All sessions for a specific user on all databases

■ All sessions for all users on all databases

Changes to user priority take place immediately for the sessions and show up
in the PRIORITY column of the DST_SESSIONS table. These changes are not
permanent, however. Any new sessions started for the user have the original
priority. To make a permanent change to a user priority, use the ALTER USER
statement described in the SQL Reference Guide.
8-14 Informix Red Brick Decision Server Administrator’s Guide

Administration Daemon Process
Your platform must have the UNIX renice command in order to support user
priorities. You must specify the full pathname of the renice executable file
with the ADMIN RENICE_COMMAND configuration parameter. ♦

Administration Daemon Process
The administration daemon process collects statistics for the DSTs and
executes ALTER SYSTEM statements. The administration daemon process
(rbwadmd) is started at the same time as the warehouse (rbwapid) and log
(rbwlogd) daemon processes.

For information on restarting the administration daemon if it goes down,
refer to “Monitoring and Controlling a Server on UNIX” on page 9-49 or
“Monitoring and Controlling a Server on Windows NT” on page 9-52.

The administration daemon collects statistics from the TMU and server
processes and returns DST data to a server process. The following figure illus-
trates statistics data flow between the administration daemon and the other
database processes.

UNIX

Figure 8-3
Data Flow Between rbwadmd and Other Database Processes

Server processes

Statistics Statistics

DST data

rb_tmu rbwadmd rbwsvr
Managing Database Activity in an Enterprise 8-15

Statistics Collection Interval
The administration daemon accepts ALTER SYSTEM statements from the
server processes and performs the appropriate administrative actions on the
TMU or on another server process. The following figure illustrates the ALTER
SYSTEM flow of control between the administration daemon and the other
server processes.

Statistics Collection Interval
Collection of database activity statistics begins as soon as the administration
daemon is started and continues for as long as the process is running. Unless
you specifically reset the statistics for a database, the collection interval for
that database is the interval that the administration daemon has been
running.

If you terminate the administration daemon, you lose all statistics currently
held in the dynamic statistic tables.

The administration daemon collects statistics only for databases that have
been accessed at least once since the administration daemon on UNIX or Red
Brick Decision Server service on Windows NT was started. Similarly, the
administration daemon collects statistics only for database users who have
accessed a database at least once since the administration daemon was
started.

To reset all statistics for a database (or all databases) to zero, use the ALTER
SYSTEM RESET STATISTICS statement.

Figure 8-4
ALTER SYSTEM Flow of Control

rbwadmd

Server processes

rbwsvr

rb_tmu

Administrative
action

Administrative
action

ALTER SYSTEM
statement
8-16 Informix Red Brick Decision Server Administrator’s Guide

DST Refresh Interval
DST Refresh Interval
You can set the maximum interval between dynamic statistic table refreshes
by using the ADMIN REPORT_INTERVAL configuration parameter and the SET
REPORT_INTERVAL command. This interval is accurate to +/- 1 minute and
might be less accurate with parallel processing.

Whenever a statement requires a change of state or whenever a session
requests, acquires, or releases a lock, the server sends updates to the dynamic
statistic tables. The states of a statement include connecting, idle, executing,
compiling, calculating, returning rows, sorting, building indexes, and
inserting. If the time between such events exceeds the value that you specify
for the configuration parameter ADMIN REPORT_INTERVAL, the dynamic
statistic tables are automatically refreshed. You can override the ADMIN
REPORT_INTERVAL value for the duration of a session using the SET
REPORT_INTERVAL command.

Syntax

To set ADMIN REPORT_INTERVAL, add an entry in the rbw.config file. The
syntax for setting this parameter is as follows.

The integer value indicates the interval in minutes.

To set the DST refresh interval for a session, issue a SET REPORT_INTERVAL
command using the following syntax.

You can turn off statistics collection by setting the DST refresh interval to zero
(either by setting the configuration parameter or issuing a SET
REPORT_INTERVAL command for a session).

ADMIN REPORT_INTERVAL integer

SET REPORT_INTERVAL integer ;
Managing Database Activity in an Enterprise 8-17

Event Logging
Event Logging
In enterprise systems, many users from different departments often access
the same Red Brick Decision Server databases. In this environment, it is
helpful to have a record of system events such as user activities, operational
events, and audit events. The event-logging feature provides such infor-
mation. This information allows you to determine whether the system is
being used correctly and helps you to diagnose error conditions.

The event logging feature generates records for a wide range of server events
(audit events, error conditions, administrative actions, schema changes, and
end-user operations) and stores the records on disk. You can display these log
records as they are generated, or you can display all the log records generated
over some interval (for example, a day) to analyze the recent system history.

Logging Subsystem
Event logging is handled by a separate subsystem: the logging subsystem.
The logging subsystem consists of a log daemon and a log viewer.

Log Daemon

The log daemon process (rbwlogd) handles log request messages issued by
Red Brick Decision Server processes when various events occur.

On UNIX, the log daemon is started by the warehouse daemon (rbwapid)
when you start that process. On Windows NT, the log process is started by
the warehouse thread (rbw.exe) when you start the Red Brick Decision Server
service. Any server process can send log request messages to the log daemon.
8-18 Informix Red Brick Decision Server Administrator’s Guide

Logging Subsystem
For example, the rb_tmu process might generate a load-initiated message,
and the rbwapid process might generate a message when an abnormal server
exit occurs. When a warehouse process generates a log request message, it
does not wait for a response. To minimize performance impact, all communi-
cation between the server and the log daemon is one-way. For example, when
a user drops a table, the server process for that user sends a message to the
log daemon and then continues its processing. The following figure illus-
trates the role of the log daemon.

When the log daemon receives a log request message from a server process,
it adds a time stamp and writes the information contained in that message to
a log file. Only one log file is active at any given time. If you are not running
event logging, no log file is active. When the disk space limits specified by the
ADMIN LOG_MAXSIZE configuration parameter have been reached, the log
daemon closes the file and initializes a new file. For more information, refer
to “Log Files” on page 8-27.

Figure 8-5
Log Daemon

Warehouse processes (for example,
rbwapid, rbwsvr, or rb_tmu)

Log files

Log request
messages

Log records to
fileLog daemon

(rbwlogd)
Managing Database Activity in an Enterprise 8-19

Logging Subsystem
Log Viewer

You can use the log viewer utility to view the contents of the log. The log
daemon writes the parameter values contained in a log message to the log
file. The log daemon does not write full message text to the log file. This text
is stored in the form of message templates in a separate message base file.
When you view the event messages, the log viewer combines the appropriate
message template with the parameter values stored in the log file to give you
a readable output. The resulting message is displayed to stdout or written to
a file. For a discussion of the message parameters, refer to “Event Log
Messages” on page 8-24.

The log viewer executable is named rbwlogview on UNIX and logdview on
Windows NT. Any user who has read permission for the log files can view
event messages with the log viewer. The log files are owned by the redbrick
account.

Figure 8-6
The Log Viewer

Log files

Message base file

Log viewer Messages displayed
to stdout
8-20 Informix Red Brick Decision Server Administrator’s Guide

Logging Subsystem
The commands have the following syntax:

rbwlogview [-a] [-t] [-e] [-f] [-p pid]
[-d database [[-d database] ...]]]
[-i sourceid [[-i sourceid] ...]]]
[-c [a][e][o][s][u]]
[-s [a][r][u]]
[logfile [[logfile] ...]]

♦

logdview [-a] [-t] [-e] [-f] [-p pid]
[-d database [[-d database] ...]]]
[-i sourceid [[-i sourceid] ...]]]
[-c [a][e][o][s][u]]
[-s [a][r][u]]
[logfile [[logfile] ...]]

♦

Option Description

-a Specifies the active log file. If you use this option, you cannot specify
logfile.

-t Specifies terse output with shorter headers.

-e Specifies continuous display of the active log file. As new records
are written to the active file, they are displayed to stdout. (Similar
to the UNIX tail command).

-f Specifies continuous display of active log file. All records currently
in the active file are first displayed, followed by any new records as
they are written to file. (Similar to the UNIX tail command).

-p pid Displays only log records that originate from the process with the
specified process ID.

-d database Displays only log records generated by process accessing the
specified database. Multiple databases can be specified.

-i sourceid Displays only log records that originate from process with the
specified sourceid (for example, rb_tmu).

 (1 of 2)

UNIX

WIN NT
Managing Database Activity in an Enterprise 8-21

Logging Subsystem
Usage

You must specify either one or more closed log files or the active log file as
log viewer input. Otherwise, the log viewer reads from stdin. The -a option
causes the log viewer to read from the active log file. You cannot specify both
a closed log file and the -a option.

The log viewer program writes to stdout, so you can use it in conjunction with
a front-end interface. For example, you can redirect the output from the
following command to a program with a graphical user interface.

-c Limits display to the specified categories, one or more of the
following: a (audit), e (error), o (operational), s (schema), u (usage).
For more information on event categories, refer to “Event Category”
on page 8-25.

-s Limits display to the specified severities, one or more of the
following: u (urgent), a (alert), r (routine). For more information on
event severities, refer to “Event Severity” on page 8-24.

logfile Specifies a particular log file to read from. Multiple files can be
specified and are read in the order that they were saved by the log
daemon. For more information on log files, refer to “Log Files” on
page 8-27.

Operating System Command

UNIX rbwlogview -a -e

Windows NT logdview -a -e

Option Description

 (2 of 2)
8-22 Informix Red Brick Decision Server Administrator’s Guide

Logging Subsystem
Example

The following command displays log records in the closed log file
rbwlog.HOST.950621.101053. Only log records generated for the SUPPORT
database and belonging to the SCHEMA category are displayed.

% rbwlogview -d SUPPORT -c s rbwlog.HOST.950621.101053
Jun 21 08:59:12 rbwsvr[20158] DB:SUPPORT SCH300R: CREATE
TABLE D1 completed successfully.
Jun 21 08:59:13 rbwsvr[20158] DB:SUPPORT SCH300R: CREATE
SYNONYM S2 completed successfully.
...

The next command displays records for all logged server events as they are
logged.

% rbwlogview -a -e
Jun 21 15:50:46 rbwapid[20500] OPE077R: Server process
PID:6603 started for userid:"redbrick"
Jun 21 15:50:59 rbwsvr[6603] DB:AROMA_DB SCH300R: CREATE
TABLE SNOOZE completed successfully.

Example

The following command displays log records in the closed log file
rbwlog.HOST.950621.101053. Only log records generated for the SUPPORT
database and belonging to the SCHEMA category are displayed.

c:\> logdview -d SUPPORT -c s rbwlog.HOST.950621.101053
Jun 21 08:59:12 rbwsvr[20158] DB:SUPPORT SCH300R: CREATE
TABLE D1 completed successfully.
Jun 21 08:59:13 rbwsvr[20158] DB:SUPPORT SCH300R: CREATE
SYNONYM S2 completed successfully.
...

The next command displays records for all logged server events as they are
logged.

c:\> logdview -a -e
Jun 21 15:50:46 rbwapid[20500] OPE077R: Server process
PID:6603 started for userid:"redbrick"
Jun 21 15:50:59 rbwsvr[6603] DB:AROMA_DB SCH300R: CREATE
TABLE SNOOZE completed successfully.

UNIX

WIN NT
Managing Database Activity in an Enterprise 8-23

Event Log Messages
Event Log Messages
All log messages issued by Red Brick processes have the following
parameters:

■ Message category

■ Message number

■ Message severity level

A log message might have additional parameters specific to it. For example,
if a user drops a table, the server processes generates a message with a
message category, message number, message severity, and additional
table_name parameter. The log processes write these parameters to the active
log file as a variable-length record.

When viewed using the log viewer, all messages have the following form:

CCC###S: Message Text

The first three characters (CCC) indicate the message category, the next three
numeric characters (###) represent the message number, and the seventh
character (S) indicates the message severity. The message text follows the
seven-character code, as in the following example:

OPE081A: New accounting level is WORKLOAD

Event Severity

Each event has one of the following event severity levels:

■ ROUTINE

■ ALERT

■ URGENT

The lowest severity is ROUTINE, and the highest severity is URGENT.
8-24 Informix Red Brick Decision Server Administrator’s Guide

Event Log Messages
Event Category

Logged events fall into the following categories:

■ AUDIT

■ ERROR

■ OPERATIONAL

■ SCHEMA

■ USAGE

You can specify a minimum severity level for logged records in each log
category. For example, you could specify that the minimum severity for
ERROR events is ALERT. In this case, only ERROR events with ALERT or
URGENT severity are logged. To specify the minimum severity level for an
event category, either use the ALTER SYTEM CHANGE LOGGING LEVEL
statement or set the appropriate configuration parameter directly. For more
information on setting the log severity level, refer to “Setting the Log Severity
Filter Level” on page 8-30.

Audit Events

Audit events are related to security and access control. Changes to roles,
access permissions, password protection, and so on generate AUDIT event
records. The default minimum severity level for audit records is ALERT.

An example of an AUDIT event record is:

AUD011A: User smith supplied incorrect password.

Error Events

Error events are user actions or changes in the server system environment
that cause errors or exceptions. The default minimum severity level for error
records is ROUTINE.

An example of an ERROR event record is as follows:

ERR717R: Pipe command not allowed with tape output.
Managing Database Activity in an Enterprise 8-25

Event Log Messages
Operational Events

Operational events are administrative actions such as component startup or
shutdown and changes to operational states taken by database adminis-
trators (or other users who are members of the DBA system role). The default
minimum severity level is ALERT.

An example of an OPERATIONAL event record is as follows:

OPE081A: New accounting level is WORKLOAD.

Schema Events

Schema events are either changes to physical database structures (creating
and dropping PSUs and segments) or changes to logical database structures
(all DDL statements). The default minimum severity level is ROUTINE.

An example of a SCHEMA event record is as follows:

SCH300R: CREATE TABLE SALES completed successfully.

Usage Events

Usage events are end-user operations in the statement system including
LOAD DATA, UNLOAD, and all DML statements (for example, SELECT state-
ments). The default minimum severity level is ALERT.

An example of a USAGE event record is as follows:

USA302R: LOAD DATA into SALES completed.

Setting the USAGE ROUTINE event logs all SQL queries that Red Brick
Decision Server processes. This setting is useful in debugging problems with
query tools. This setting logs all SQL queries and, depending on system
usage, can cause the log files to grow rapidly.
8-26 Informix Red Brick Decision Server Administrator’s Guide

Log Files
Log Files
The log daemon writes log records to the active log file. When this file
exceeds the size specified by the ADMIN LOG_MAXSIZE configuration
parameter, the log daemon closes the file and creates a new active file. The log
daemon also closes the active file when you stop the logging daemon, and it
creates a new active file upon logging startup. In this manner, a sequence of
log files accumulates over time. The contents of the files in this sequence can
be concatenated before processing because none of the files contain any
header or trailer information.

The active log file and the saved log files have the following naming
conventions.

The <datetime_stamp> suffix on saved filenames indicates the date and time
at which the log daemon closed the file.

The default location for these files is the $RB_CONFIG/logs directory on UNIX
or the %RB_CONFIG%\logs directory on Windows NT. To specify a different
location, set the ADMIN LOG_DIRECTORY configuration parameter. All log
files are owned by the redbrick account.

Old log files are not removed automatically. The statement administrator
must provide a script to periodically remove these files or remove them
manually.

Warning: If you do not remove old log files, these files accumulate over time and
potentially consume all the free disk space. In addition, if you do not specify a value
for ADMIN LOG_MAXSIZE, the log daemon writes to a single log file that grows
until limited by available disk space.

Operating System Command

UNIX rbwlog.<daemon_name>.active

rbwlog.<daemon_name>.<datetime_stamp>

Windows NT rbwlog.<service_name>.active

rbwlog.<service_name>.<datetime_stamp>
Managing Database Activity in an Enterprise 8-27

Configuring the Logging Subsystem
Configuring the Logging Subsystem
To configure the logging subsystem, set various configuration parameters in
the rbw.config file.

Setting the Startup State

The ADMIN LOGGING parameter determines the startup actions of the
logging daemon. The syntax for setting this parameter is as follows.

If the ADMIN LOGGING parameter is set to ON, the log daemon creates an
initial log file when it initializes and starts logging events. If this parameter
is set to OFF, the log daemon does not perform any operations.

Tip: You can start or stop logging while the log daemon is running by using the
ALTER SYSTEM START LOGGING and ALTER SYSTEM STOP LOGGING
statements.

Specifying the Location of Log Files

The ADMIN LOG_DIRECTORY parameter specifies the directory in which the
log daemon creates the log files. The syntax for setting this parameter is as
follows.

The pathname variable can be an absolute pathname or a relative pathname.
Relative pathnames are interpreted relative to the directory specified by the
RB_CONFIG environment variable. If you do not set the ADMIN
LOG_DIRECTORY parameter, the default logging directory is
$RB_CONFIG/logs on UNIX or %RB_CONFIG%\logs on Windows NT.

ADMIN LOGGING ON

OFF

ADMIN LOG_DIRECTORY pathname
8-28 Informix Red Brick Decision Server Administrator’s Guide

Configuring the Logging Subsystem
Specifying the Maximum Log File Size

The ADMIN LOG_MAXSIZE parameter specifies the maximum log file size.
The syntax for setting this parameter is as follows.

When a log file exceeds the size specified by this parameter, the log daemon
closes the file and creates a new active file in the same directory. The units of
the integer value are interpreted as follows:

■ Bytes if neither K nor M is specified

■ Kilobytes (1024 bytes) if K is specified

■ Megabytes (1,048,576 bytes) if M is specified

If you specify K or M, this suffix must immediately follow the numeric value
with no spaces.

The minimum value for this parameter is 10K (10,240) bytes.

Warning: If you do not set this configuration parameter or if you set it to zero or a
negative number, no maximum size is imposed on log files. In this case, log files can
continue to grow, limited only by available disk space in the log directory.

ADMIN LOG_MAXSIZE integer

integerK

integerM
Managing Database Activity in an Enterprise 8-29

Configuring the Logging Subsystem
Setting the Log Severity Filter Level

There are separate configuration parameters for setting the log severity filter
level, one for each message category. The log severity filter level represents
the minimum severity an event within a given category must have in order
to be logged. The syntax for these parameters is as follows.

Tip: To change the filtering level for each logging category during warehouse
operation, use the ALTER SYSTEM CHANGE LOGGING LEVEL statement.

Controlling Logging Operations

To control logging operations, use the ALTER SYSTEM statement. This
statement has options for:

■ Starting logging

■ Stopping logging

■ Switching log files

■ Changing log filter levels

■ Terminating the log daemon

Tip: The log daemon must be running in order to execute ALTER SYSTEM state-
ments. If you issue an ALTER SYSTEM statement to perform one of the preceding
actions but nothing happens, verify that the log daemon is running.

For the full syntax of the ALTER SYSTEM statement, refer the SQL Reference
Guide.

ADMIN LOG_AUDIT_LEVEL ROUTINE

ALERT

URGENTADMIN LOG_OPERATIONAL_LEVEL

ADMIN LOG_ERROR_LEVEL

ADMIN LOG_SCHEMA_LEVEL

ADMIN LOG_USAGE_LEVEL
8-30 Informix Red Brick Decision Server Administrator’s Guide

Configuring the Logging Subsystem
Starting Logging

The ALTER SYSTEM START LOGGING statement starts logging. The log
daemon performs the following actions:

■ Creates a log file

■ Begins accepting log request messages from server processes and
writes the corresponding log records to the file

If logging is already running, this statement is ignored.

Stopping Logging

The ALTER SYSTEM STOP LOGGING statement stops logging and closes the
active log file. The log daemon, continues running, and you can restart
logging at any time. If logging is already stopped, this statement has no
effect.

Switching Log Files

The ALTER SYSTEM SWITCH LOGGING FILE statement closes the active log
file, creates a new active log file, and resumes logging to this new file. If
logging is stopped, this statement has no effect.

Changing Log Filter Levels

The ALTER SYSTEM CHANGE LOGGING LEVEL statement changes the current
log severity level for a selected log category. You can change any of the log
categories to any severity level. This change takes effect immediately.

Terminating the Log Daemon

The ALTER SYSTEM TERMINATE LOGGING DAEMON statement terminates
the log daemon process (rbwlogd). The log daemon closes and saves all active
files (both log and account files) before shutting down. For information on
account files and the accounting feature, refer to “Accounting” on page 39.
Managing Database Activity in an Enterprise 8-31

Query Logging
Query Logging
SQL statements for queries are logged through the USAGE ROUTINE event of
the log file. To enable query logging, use the following statement:

RISQL> alter system change logging level usage routine;

To enable query logging, the log daemon must be running. When you enable
logging, all queries that the server processes are written to the log file and
depending on how active your system is, your log files might grow rapidly
in size. If you enable query logging, be sure to provide ample disk space for
your log files.

For the complete syntax of the ALTER SYSTEM statement, refer to the SQL
Reference Guide.

Controlling Advisor Logging
If you have installed the Red Brick Vista option, there are log files for the
Advisor. This section describes the commands that control Advisor logging.
For detailed information about using the Advisor, refer to the Informix Vista
User’s Guide.

Tip: The Advisor logs cannot be read with the rbwlogview utility on UNIX or the
logdview utility on Windows NT. The Advisor log files are read when you query the
Advisor system tables.

Advisor Log Files
The log daemon writes log records to the active Advisor log file. When this
file exceeds the size specified by the ADMIN ADVISOR_LOG_MAXSIZE config-
uration parameter, the log daemon closes the file and creates a new active file.
The log daemon also closes the active file when you stop the logging process
and creates a new active file at logging startup. In this manner, a sequence of
log files accumulates over time.
8-32 Informix Red Brick Decision Server Administrator’s Guide

What the Advisor Logs
The active log file and the saved log files have the following naming
conventions.

The <datetime_stamp> suffix on saved filenames indicates the date and time
at which the log daemon closed the file.

The default location for these files is the $RB_CONFIG/logs directory on UNIX
and the %RB_CONFIG%\logs directory on Windows NT. To specify a different
location, set the ADMIN ADVISOR_LOG_DIRECTORY configuration
parameter. All log files are owned by the redbrick account.

Old log files are not removed automatically. The database administrator must
provide a script to periodically remove these files or remove them manually.

Warning: If you do not remove old log files, these files accumulate over time and can
potentially consume all the free disk space. In addition, if you do not specify a value
for ADMIN LOG_MAXSIZE, the log daemon writes to a single log file that grows
until limited by available disk space.

What the Advisor Logs
The Advisor logs the following information.

Operating System Command

UNIX rbwadvlog.<daemon_name>.active
rbwadvlog.<daemon_name>.<datetime_stamp>

Windows NT rbwadvlog.<service_name>.active
rbwadvlog.<service_name>.<datetime_stamp>

Information Description

Time stamp Indicates the date and time the message was logged.

Database name Specifies the name of the database being used.

Base table identification Integer that identifies the base table that was used to
create the precomputed view.

 (1 of 2)
Managing Database Activity in an Enterprise 8-33

Starting and Stopping the Advisor Log
Starting and Stopping the Advisor Log
Use the ADMIN ADVISOR_LOGGING parameter or the ALTER SYSTEM
statement to start and stop advisor logging.

ADMIN ADVISOR_LOGGING

The ADMIN ADVISOR_LOGGING rbw.config file parameter determines the
startup state of the Advisor log. When this parameter is set to ON, a log file is
created when the log daemon starts. When this parameter is set to OFF, no log
file is created, and data is not logged. The default setting is OFF.

If ADMIN ADVISOR_LOGGING is set to ON to create the log files and if
OPTION ADVISOR_LOGGING is set to ON, the log records are captured when
aggregate views are used and when candidate views are generated.

View identification used
to answer a query

Integer that identifies a precomputed view that was
used to answer a query.

Rollup information Integer that indicates the number of times a view was
referenced to answer queries asking for a subset of the
grouping columns of the view or asking for an
attribute of a dimension with less granularity.

Elapsed time for the query
and each aggregate block
within the query

Integer that indicates the total amount of time spent
executing the aggregate parts of a query.

SQL text for the aggregate
block

Represents the definition of the candidate view.

Information Description

 (2 of 2)
8-34 Informix Red Brick Decision Server Administrator’s Guide

Starting and Stopping the Advisor Log
Syntax

The following syntax diagram shows how to set the ADMIN
ADVISOR_LOGGING parameter.

ALTER SYSTEM

ALTER SYSTEM operations control database activity and various adminis-
trative actions. The two ALTER SYSTEM statements that control logging
activities of the Advisor are the ADVISOR_LOGGING statement and ALTER
SYSTEM SWITCH ADVISOR_LOG FILE statement.

Syntax

The following syntax diagram shows how to construct an ALTER SYSTEM
statement.

ON

OFFADMIN ADVISOR_LOGGING

ON/OFF Specifies whether the Advisor log files are created at system
startup. When this parameter is set to ON, a log file is created
when the log daemon starts. When this parameter is set to OFF, no
log file is created, and data is not logged.

STARTALTER SYSTEM

STOP

ADVISOR_LOGGING

SWITCH ADVISOR_LOG FILE
Managing Database Activity in an Enterprise 8-35

Starting and Stopping the Advisor Log
SET ADVISOR LOGGING

The SET ADVISOR LOGGING statement enables or disables advisor query
logging for the current session. Advisor logging must be enabled, either with
the ADMIN ADVISOR_LOGGING ON setting in the rbw.config file or with an
ALTER SYSTEM START ADVISOR_LOGGING statement, in order for the SET
ADVISOR LOGGING statement to take effect.

Use this statement to control whether a particular query is or is not logged in
the advisor log. Use the OPTION ADVISOR_LOGGING rbw.config file
parameter to set this parameter globally for all sessions. The default for the
rbw.config file parameter is ON.

Syntax

The following syntax diagram shows how to construct a SET ADVISOR
LOGGING statement.

START/STOP ADVISOR_LOGGING Offers the option to start or stop logging
information in the log file. There is no
default setting for this statement. This
statement overrides the value set with
the ADMIN ADVISOR_LOGGING
rbw.config file parameter.

SWITCH ADVISOR_LOG FILE Creates a new active log file with a
default name.

ON_WITH_CORR_SUB

SET ADVISOR LOGGING

OFF

ON
8-36 Informix Red Brick Decision Server Administrator’s Guide

ADMIN ADVISOR_LOG_DIRECTORY
ADMIN ADVISOR_LOG_DIRECTORY
The ADMIN ADVISOR_LOG_DIRECTORY rbw.config file parameter specifies
the directory that stores the log files.

The following syntax diagram shows how to set the parameter ADMIN
ADVISOR_ LOG_DIRECTORY.

The pathname variable specifies the directory in which log files are created.
The pathname must specify an existing directory. It can be a relative or
absolute pathname. Relative pathnames are relative to the directory specified
by the RB_CONFIG environment variable. If the configuration parameter is
not specified, the default logging directory is $RB_CONFIG/logs on UNIX or
%RB_CONFIG%\logs on Windows NT.

ON Specifies that queries that get rewritten are logged
(except queries that contain correlated subqueries).

OFF Specifies that queries are not logged.

ON_WITH_CORR_SUB Specifies that correlated subqueries, along with
other queries that get rewritten, are logged.

ADMIN ADVISOR_LOG_DIRECTORY pathname
Managing Database Activity in an Enterprise 8-37

ADMIN ADVISOR_LOG_MAXSIZE
ADMIN ADVISOR_LOG_MAXSIZE
The ADMIN ADVISOR_LOG_MAXSIZE parameter specifies the maximum
advisor log file size. The syntax for setting this parameter is as follows.

Warning: If you do not set this configuration parameter, or if you set this parameter
to zero or a negative number, no maximum size is imposed on advisor log files. In this
case, log files can continue to grow, limited only by available disk space in the log
directory.

ADMIN ADVISOR_LOG_MAXSIZE integer

integerK

integerM

integer,
integerK,
integerM

When a log file exceeds the size specified by this parameter, the
log daemon closes the file and creates a new active file in the
same directory. The units of the integer value are interpreted as
follows:

■ Bytes if neither K nor M is specified

■ Kilobytes (1024 bytes) if K is specified

■ Megabytes (1,048,576 bytes) if M is specified

If you specify K or M, this suffix must immediately follow the
numeric value with no spaces. The minimum value for this
parameter is 10 kilobytes (10,240 bytes).
8-38 Informix Red Brick Decision Server Administrator’s Guide

SET UNIFORM PROBABILITY FOR ADVISOR
SET UNIFORM PROBABILITY FOR ADVISOR
The SET UNIFORM PROBABILITY FOR ADVISOR statement determines
whether the log file is scanned in order to compute the reference count for
each view when the RBW_PRECOMPVIEW_UTILIZATION advisor system
table is queried. When it is set to ON, it is assumed that all of the views on a
base table are referenced the same number of times. The default setting is
OFF.

The following syntax diagram shows how to construct a SET UNIFORM
PROBABILITY FOR ADVISOR statement.

Accounting
It is often useful to have a means of calculating the database workload
generated by individual users. For example, you might want to implement a
charge-back accounting system to charge users for their database use. The
accounting feature described in this chapter provides a record of the database
workload generated by each user.

The accounting feature generates records for those server operations that
comprise the basic database workload and stores these records on disk.
Accounting records are generated when a server process (rbwsvr) or a TMU
process (rb_tmu) completes any of the following operations:

■ An individual DML operation

■ A query

■ A load operation

The accounting feature can run in two separate modes, job accounting and
workload accounting. These modes differ in the level of workload detail
captured.

SET UNIFORM PROBABILITY FOR ADIVISOR OFF

ON
Managing Database Activity in an Enterprise 8-39

Accounting Process
Job accounting generates records that contain a summary of the resources
used for a given operation. This summary includes statistics such as CPU
time and elapsed time. Job accounting is intended for calculating the work
generated by database users as a basis for cost accounting and charge-back
systems.

Workload accounting generates records that contain the same information as
job accounting but include some additional detail. Workload accounting is
intended primarily for the use of Red Brick Systems support personnel for
system analysis.

You cannot display accounting records directly. Your site must have a
program to read the accounting records and generate the appropriate data
(for example, user charges) based on those records. The directory
redbrick_dir/util/readacct on UNIX contains a sample program for accounting
record processing. For more information, refer to the README file in this
directory.

Accounting Process
Accounting is performed by the log daemon (rbwlogd). The process that
generates accounting records is basically the same as the process that
generates event log records. The rbwsvr, rb_tmu, or rb_ptmu processes send
accounting request messages to the log daemon after performing basic
workload operations. When a process generates an accounting request
message, it does not wait for a response. To minimize performance impact,
all communication between the generating process and the log daemon is
one-way: from the process to the log daemon.

Figure 8-7
Accounting Process on UNIX

rbwlogd

Red Brick processes (rbwsvr,
rb_tmu, rb_ptmu) Accounting

files

Accounting request
messages

Accounting
records to disk
8-40 Informix Red Brick Decision Server Administrator’s Guide

Format of Accounting Records
When the log daemon receives an accounting request message from a rbwsvr,
rb_tmu, or rb_ptmu process, it adds a time stamp and writes the information
contained in that message to a log file as a self-describing, variable-length
record.

Format of Accounting Records
The accounting records have a self-describing, variable-length record format
with the following components:

1. A binary integer indicating the number of data bytes in the record.

2. A binary type field indicating whether the record is a job accounting
record or a workload accounting record.

3. A series of encoded values each with a tag/type/length header.
These values represent the actual accounting data.

For more information on this record format, refer to the README file and the
sample code for processing accounting records, both located in the directory
redbrick_dir/util/readacct on UNIX.

Accounting Files
The log daemon writes accounting records to the active accounting file.
When this file exceeds the size specified by the ADMIN ACCT_MAXSIZE
configuration parameter, the log daemon closes this file and creates a new
active file. The log daemon also closes the active file when you stop the
accounting process and creates a new active file at accounting startup. In this
manner, a sequence of accounting files accumulates over time. The contents
of the files in this sequence can be concatenated before processing because
none of the files contain any header or trailer information.
Managing Database Activity in an Enterprise 8-41

Accounting Files
The active accounting file and the saved accounting files have the following
naming conventions.

The <datetime_stamp> suffix on saved filenames indicates the date and time
when the log daemon closed the file.

The default location for these files is the $RB_CONFIG/logs directory on UNIX
and the %RB_CONFIG%\logs directory on Windows NT. To specify a different
location, set the ADMIN ACCT_DIRECTORY configuration parameter. All
accounting files are owned by the redbrick account.

Old accounting files are not removed automatically. The database adminis-
trator must provide a script to periodically remove these files or remove them
manually.

Warning: If you do not remove old accounting files, these files accumulate over time
and potentially consume all the free disk space. In addition, if you do not specify a
value for ADMIN ACCT_MAXSIZE, the log daemon writes to a single accounting file
that grows until limited by available disk space.

Operating System Command

UNIX rbwacct.<daemon_name>.active

rbwacct.<daemon_name>.<datetime_stamp>

Windows NT rbwacct.<service_name>.active
rbwacct.<service_name>.<datetime_stamp>
8-42 Informix Red Brick Decision Server Administrator’s Guide

Configuring Accounting
Configuring Accounting
To configure the accounting subsystem, set the relevant configuration param-
eters in the rbw.config file.

Setting the Startup State

The ADMIN ACCOUNTING parameter determines the startup state of the
accounting function. The syntax for setting this parameter is as follows.

If this parameter is set to ON, the log daemon creates an accounting file when
it starts and begins capturing accounting records. If this parameter is set to
OFF, the log daemon does not create an accounting file or perform any
accounting operations when it starts.

Tip: When the log daemon is running, you can start or stop accounting via the
ALTER SYSTEM START ACCOUNTING and ALTER SYSTEM STOP ACCOUNTING
statements.

Specifying the Location of Accounting Files

The ADMIN ACCT_DIRECTORY parameter specifies the directory in which the
log daemon creates accounting files. The syntax for setting this parameter is
as follows.

The pathname can be an absolute pathname or a relative pathname. Relative
pathnames are interpreted as relative to the directory specified by the
RB_CONFIG environment variable. If you do not set the ADMIN
ACCT_DIRECTORY parameter, the default accounting directory is
$RB_CONFIG/logs on UNIX and %RB_CONFIG%\logs on Windows NT.

ADMIN ACCOUNTING ON

OFF

ADMIN ACCT_DIRECTORY pathname
Managing Database Activity in an Enterprise 8-43

Configuring Accounting
Specifying the Maximum Accounting File Size

The ADMIN ACCT_MAXSIZE parameter specifies the maximum accounting
file size. The syntax for setting this parameter is as follows.

When an accounting file exceeds the size specified by this parameter, the log
daemon closes the file and creates a new active file in the same directory. The
units of the integer value are interpreted as follows:

■ Bytes if neither K nor M is specified

■ Kilobytes (1,024 bytes) if K is specified

■ Megabytes (1,048,576 bytes) if M is specified

If you specify K or M, this suffix must immediately follow the numeric value
with no spaces. The minimum value for this parameter is 10 kilobytes(10,240
bytes).

Warning: If you do not set this configuration parameter, or if you set this parameter
to zero or a negative number, no maximum size is imposed on accounting files. In this
case, accounting files can continue to grow, limited only by available disk space in the
accounting directory.

Setting the Accounting Mode

The ADMIN ACCT_LEVEL parameter sets the accounting mode: JOB or
WORKLOAD. The syntax for setting this parameter is as follows.

ADMIN ACCT_MAXSIZE integer

integerK

integerM

ADMIN ACCT_LEVEL JOB

WORKLOAD
8-44 Informix Red Brick Decision Server Administrator’s Guide

Controlling Accounting
The level of detail captured in the accounting files depends on whether the
server is running job accounting or workload accounting. Job accounting
includes basic resource utilization and is the default. Workload accounting
includes additional information about each recorded event. Workload
accounting has the potential to quickly produce very large accounting files.
Change the accounting detail level during database operation use with the
ALTER SYSTEM CHANGE ACCOUNTING LEVEL statement.

Controlling Accounting
To control accounting operations while the database is running, use the
ALTER SYSTEM statement. This statement has options for performing the
following operations:

■ Starting accounting

■ Stopping accounting

■ Switching accounting files

■ Changing accounting mode

For the complete syntax of the ALTER SYSTEM statement, refer to the SQL
Reference Guide.

Starting Accounting

The ALTER SYSTEM START ACCOUNTING statement starts accounting. The
log daemon:

■ creates an accounting file.

■ begins accepting accounting request messages from database
processes and writes the corresponding accounting records to the
file.

If accounting is already running, this statement is ignored.
Managing Database Activity in an Enterprise 8-45

Controlling Accounting
Stopping Accounting

The ALTER SYSTEM STOP ACCOUNTING statement stops accounting and
closes the active accounting file. The log daemon continues running, and you
can restart accounting at any time. If accounting is already stopped, this
statement has no effect.

Switching Accounting Files

The ALTER SYSTEM SWITCH ACCOUNTING FILE statement closes the active
accounting file, creates a new active accounting file, and resumes accounting,
writing accounting records to this new file. If accounting is stopped, this
statement has no effect.

Changing Accounting Mode

The ALTER SYSTEM CHANGE ACCOUNTING LEVEL statement changes the
accounting mode from JOB to WORKLOAD or vice versa. This change takes
place immediately.
8-46 Informix Red Brick Decision Server Administrator’s Guide

9
Chapter
Maintaining a Data Warehouse
In This Chapter . 9-5

Locking Tables and Databases 9-6
Manual Table or Database Locks 9-6
Types of Table Locks 9-7
Locking and Segments 9-8
Determining When to Lock a Table or Database 9-9
Specifying Wait Behavior for Server and TMU Locks 9-10

No-Wait Behavior 9-10
Livelocks 9-10
Deadlocks 9-11

Setting Isolation Level for Versioned Transactions 9-11

Obtaining Information on Tables and Indexes 9-13

Monitoring Growth of Tables and Indexes 9-13
STAR Indexes 9-14
MAXSIZE Column 9-15
USED Column 9-16
TOTALFREE Column 9-16
Pseudocolumns. 9-16

Adding Space to a Segment 9-18

Altering Segments 9-21
ALTER SEGMENT Operations 9-21
Ensuring No Users Are Active 9-22
Attaching and Detaching Segments 9-23
Moving Entire Segments 9-24
Specifying a Segmenting Column 9-24
Specifying a Range 9-24

9-2 Infor
Taking a Segment Offline or Online 9-24
Clearing a Segment 9-25
Renaming a Segment 9-25
Changing PSU Sizes 9-25
Changing PSU Location 9-26
Verifying a Segment 9-26
Forcing a Segment into an Intact State 9-27

Recovering a Damaged Segment 9-27

Managing Optical Storage 9-29
Assigning Optical Storage 9-30
Specifying Access Behavior for Optical Segments 9-31
Specifying Index Selection with Optical Segments 9-32

Altering Tables . 9-33
Adding and Dropping Columns 9-34
Changing a Column Name 9-34
Changing the Default Value for a Column. 9-34
Changing the MAXSEGMENTS and

MAXROWS PER SEGMENTS Values 9-35
Changing the Way Referential Integrity Is Maintained 9-35
Changing the Data Type for a Column 9-36
Adding and Dropping Foreign Keys 9-37
Changing the Fill Factor for a VARCHAR Column. 9-38
Recovering from an Interrupted ALTER TABLE

Operation 9-38
Recovering the Table. 9-38
Interruptions: Causes and Prevention 9-39

Copying or Moving a Database. 9-40
Full Versus Relative Pathnames 9-40
Copying a Database That Contains Only Relative

Pathnames 9-42
Copying a Database That Contains Full Pathnames 9-42
Moving a Database That Contains Only Relative

Pathnames 9-43
Moving a Database That Contains Full Pathnames. 9-44
mix Red Brick Decision Server Administrator’s Guide

Modifying the Configuration File 9-45

Monitoring and Controlling a Database Server 9-49
Monitoring and Controlling a Server on UNIX 9-49

Daemon Processes 9-50
Findserver Utility 9-51
Log Files . 9-52

Monitoring and Controlling a Server on Windows NT 9-52

Enabling Licensed Options. 9-53

Determining Version Information 9-54

Deleting Database Objects and Databases. 9-54
Dropping Database Objects 9-55

Indexes . 9-55
Macros . 9-56
Roles. 9-56
Segments . 9-56
Synonyms . 9-57
Tables . 9-57
Views . 9-57

Deleting a Database 9-58
Maintaining a Data Warehouse 9-3

9-4 Infor
mix Red Brick Decision Server Administrator’s Guide

In This Chapter
This chapter discusses ongoing tasks involved in maintaining a data
warehouse to meet users’ needs or reflect changes to a database. For a
database that does not change except when the entire database is loaded with
new data, maintenance tasks are minimal. You need only ensure that enough
space is available in the default and any named segments to accommodate
the current batch of input data. Any needed restoration of the database can
be done from the original input data files.

For databases that are modified by incremental load operations or INSERT,
UPDATE, or DELETE statements, maintenance includes accommodating
growth in the database, as well as adjusting to changes in users’ needs or the
warehouse environment. For databases that change, backing up the data
regularly is an important part of maintenance. For information about backup
operations, refer to “Planning Backup and Restore Procedures” on page 1-20,
the SQL-BackTrack User’s Guide, or your system utilities documentation.

The following sections are included in this chapter:

■ Locking Tables and Databases

■ Obtaining Information on Tables and Indexes

■ Monitoring Growth of Tables and Indexes

■ Adding Space to a Segment

■ Altering Segments

■ Recovering a Damaged Segment

■ Managing Optical Storage

■ Altering Tables

■ Copying or Moving a Database

■ Modifying the Configuration File

■ Monitoring and Controlling a Database Server
Maintaining a Data Warehouse 9-5

Locking Tables and Databases
■ Enabling Licensed Options

■ Determining Version Information

■ Deleting Database Objects and Databases

Locking Tables and Databases
To preserve consistency within a database, operations that modify data must
be allowed to complete without interruption, blocking other read and write
operations until the modification (write operation) is complete. Locking is
performed automatically by operations that require it for database consis-
tency. For instance, the TMU automatically locks the tables and database as
needed for its operations.

Manual Table or Database Locks
To lock a table or database manually for server activity, use the LOCK
statement. This ensures uninterrupted execution and table access for
multiple operations. Changes made to a table or database during a LOCK
operation are automatically committed. A rollback operation is not
supported.

A user can manually lock only one object (table or database) at a time with
the LOCK statement. The first object must be unlocked before a second one
can be locked. The system, however, can implicitly lock as many objects as
necessary to process a query or command. For a complete description of the
LOCK statement, refer to the SQL Reference Guide.

To suspend all new activity on a database, use the ALTER SYSTEM QUIESCE
statement.
9-6 Informix Red Brick Decision Server Administrator’s Guide

Types of Table Locks
Types of Table Locks
Red Brick Decision Server provides six types of table locks that are applied
during blocking mode (nonversioning) and versioning operations. There are
three types of read locks and three types of write locks.

Read locks lock a table for read access only, allowing multiple readers but
restricting write actions. This access ensures that a transaction reads a
consistent view of a table. Write locks allow other users various levels of read
access to the table for the duration of the lock. Different types of read and
write locks allow varying levels of concurrency in the database, ranging from
disallowing any concurrent transactions (blocking) to allowing a write trans-
action on a table while read transactions are taking place on versions of the
same table or a table with a primary key/foreign key relationship.

The following table provides definitions and descriptions of the six types of
locks.

Lock Type Definition Used for This Type of Transaction

RO Read-Only Read transaction that allows any other read or
write transactions except a blocking transaction
on the table.

RK Read-Key Read transaction that does not allow other trans-
actions to change primary key values in the table.

RD Read-Data Read transaction that does not allow any write
transactions to the table.

WD Write-Data Write transaction that does not modify existing
primary key values in the database (for example,
INSERT or UPDATE of nonkey columns).

WK Write-Key Write transaction that modifies existing primary
key values in the database (for example, DELETE
or UPDATE of key columns).

WB Write-Blocking Write transaction that does not allow any other
read or write transactions on the table.
Maintaining a Data Warehouse 9-7

Locking and Segments
The following table shows how the various types of locks interact with each
other. The shaded area indicates blocking transactions (transactions without
versioning) for the lock combinations. The unshaded area indicates
concurrent transactions (versioned transactions).

To check what types of locks are on tables, query the TYPE column of the
DST_LOCKS table.

Locking and Segments
Individual segments cannot be explicitly locked. If a table is locked, access to
all online segments is controlled by the table lock of their owning table.
Operations permitted on offline segments automatically secure the necessary
locks. For example, an offline load operation automatically write-locks that
segment to prevent two simultaneous load or restore operations, and it
automatically read-locks the owning table to prevent the segment from being
dropped or altered during the offline operation.

RO RK RD WD WK WB

RO C C C C C B

RK C C C C B B

RD C C C B B B

WD C C B B B B

WK C B B B B B

WB B B B B B B
9-8 Informix Red Brick Decision Server Administrator’s Guide

Determining When to Lock a Table or Database
Determining When to Lock a Table or Database
You might choose to lock a table in the following cases:

■ To perform consecutive modifications to the data in a table

Lock the table to prevent access by other users until all the modifica-
tions are complete.

■ Before beginning a delete operation in order to ensure the access
needed to maintain referential integrity of affected tables (with
LOCK…FOR DELETE on those tables)

Although all required locking is done automatically, the DELETE
operations can complete sooner if you manually lock the tables to
prevent access by other users between DELETE operations. For infor-
mation on how the ON DELETE clause works and which tables are
locked, refer to “Maintaining Referential Integrity with ON
DELETE” on page 5-14.

You must lock a database when you are performing a restore operation or any
operation that affects the entire database. Database locks are applied with the
LOCK DATABASE statement. These locks prevent the entire database, all
tables including system tables, from being read or modified by anyone else
until the UNLOCK DATABASE statement is issued. If this lock is applied to a
database, the system tables are locked so that no new operations that access
these tables can start until the database is unlocked.

You might also choose to lock the database in the following cases:

■ If you are performing a consecutive series of ALTER TABLE state-
ments and want to prevent any intervening operations by other
users

■ When you are issuing operations that affect the system tables, such
as ALTER SEGMENT
Maintaining a Data Warehouse 9-9

Specifying Wait Behavior for Server and TMU Locks
Specifying Wait Behavior for Server and TMU Locks
When a server or TMU process encounters a read-locked table or database,
the default behavior is that the process waits. Both read and write processes
queue up in the order in which they come in. The two other wait behaviors
are no-wait and livelocks. In addition, the possibility of a deadlock can affect
the wait behavior.

No-Wait Behavior

You can change the locking behavior so that instead of the process waiting, a
message indicates the server or TMU operation failed because a table or
database was locked.

To change the wait behavior for TMU activity, include one or more TMU SET
LOCK NO WAIT commands in a TMU control file. For more information, refer
to Table Management Utility Reference Guide.

To change the wait behavior for database server statements such as ALTER
SEGMENT, INSERT, UPDATE, or DELETE, specify NO WAIT by any of the
following means:

■ Interactively for the current session with a LOCK statement

■ For all of a user’s server sessions with a SET command in that user’s
.rbwrc file

■ For all server sessions in the server .rbwrc file

Livelocks

You can change the locking behavior so that when read operations encounter
a read-locked database they proceed, but write operations are held up until
all read operations have completed. All read operations go to the front of the
queue, and write operations proceed only when no read operations are in the
queue. To specify this behavior, set the ALLOW_POSSIBLE_LIVELOCK
parameter in the rbw.config file to OFF. If you are using a versioning database,
Informix advises that you not change this parameter.
9-10 Informix Red Brick Decision Server Administrator’s Guide

Setting Isolation Level for Versioned Transactions
Deadlocks

If waiting for existing locks to be released could result in a deadlock, the
server denies the lock request and immediately returns control to the lock
requestor. If you prefer to risk occasional deadlocks in exchange for the WAIT
option to always wait, you can include the following line in the rbw.config file:

OPTION ALLOW_POSSIBLE_DEADLOCKS ON

If you set this option ON and deadlocks occur, you must then use a system
command to kill all deadlocked processes. The default value of this
parameter is OFF.

Deadlocks occur only when the LOCK TABLE or LOCK DATABASE statement
is used. The automatic locking operations of the server or TMU do not cause
deadlocks. Instead, the server returns an error message before the deadlock
occurs.

Setting Isolation Level for Versioned Transactions
For versioned SQL transactions, two user-controlled isolation levels are
available: SERIALIZABLE and REPEATABLE READ. The isolation level is the
level of concurrency allowed for the duration of the transaction. Depending
on the level being used, different read locks are used on the tables to allow
different levels of access to those tables. For information on lock types, refer
to “Types of Table Locks” on page 9-7.

The SERIALIZABLE mode is the most restrictive. Other versioned transactions
cannot use (read) a table locked by another transaction for use in modifying
another table. This mode ensures that the new versioned transaction reads
the latest version of the table before using it to modify another table.

The REPEATABLE READ mode is less restrictive. Versioned transactions can
read an older version of a table that is locked by another transaction for use
in modifying another table. This mode allows a new versioned transaction to
proceed with an older version of the table, allowing the new transaction to
execute sooner but with no guarantee that it is using the latest version of one
table to modify another table.
Maintaining a Data Warehouse 9-11

Setting Isolation Level for Versioned Transactions
The isolation level is controlled through the SET TRANSACTION ISOLATION
LEVEL statement and the OPTION TRANSACTION_ISOLATION_LEVEL
rbw.config file parameter. The default level is SERIALIZABLE. For the syntax of
this statement, refer to the SQL Reference Guide.

Example

To illustrate the difference between the isolation levels, consider an appli-
cation in which you have a 100,000,000-row customer table. Assume that
table has a versioned transaction (a TMU LOAD operation) that just started
and is adding new customers whose last names begin with the letter A. You
know that this transaction takes about 15 minutes to complete.

Your manager suddenly calls and asks you to add all the customers whose
last name starts with the letter “S” to the Preferred Customer table. The
Preferred Customer table is in the same database but is not related to the
customer table with any primary key/foreign key relationships. You need to
complete the operation in 10 minutes. The SQL INSERT statement for this
operation is as follows:

insert into preferred_customer
select last_name, first_name, id, address from customer
where last_name like ’S%’
group by last_name, first_name, id, address
order by last_name, first_name;

If you run this transaction in SERIALIZABLE mode, it must wait for the LOAD
operation to complete. It must wait because it is using data from a table that
is currently being modified to modify another table. But you know that you
are not going to use any of the data that is currently being modified. You are
interested in customers with last names beginning with S, and only
customers with last names beginning with A are being changed.

So you run the transaction in REPEATABLE READ mode by issuing the
following statement before executing the INSERT statement:

set transaction isolation level repeatable read;

You then run the query, and it executes without waiting.

In this example, if the LOAD operation added new customers whose last
names begin with the letter S instead of the letter A, and if you ran the INSERT
operation in REPEATABLE READ mode, you might not get the results you
expect. You will not see the latest changes made with this INSERT operation.
9-12 Informix Red Brick Decision Server Administrator’s Guide

Obtaining Information on Tables and Indexes
Obtaining Information on Tables and Indexes
You can check an index for corruption and obtain configuration and size
information with the CHECK INDEX statement. You can check for and
optionally repair damage to table storage data structure and row counts of
tables with the CHECK TABLE statement.

For a description of the segment statistics that CHECK TABLE produces, refer
to “Using CHECK TABLE with the VERBOSE Option” on page 10-34.

Monitoring Growth of Tables and Indexes
If tables and their indexes grow in your database, you must accommodate
this growth. To prevent the database from running out of space at an incon-
venient time, monitor the growth and compare the actual growth with the
space available, adding new segments and/or PSUs as needed. Error
messages are issued when a segment is full.

If you receive an out-of-space error because a segment ran out of space, you
can either:

■ Specify a larger value for the MAXSIZE value of the last PSU with the
ALTER SEGMENT…CHANGE MAXSIZE option.

■ Add a new PSU to the segment with the ALTER SEGMENT…ADD
STORAGE option.

Important: If no available file system contains additional space, you must make file
system space available before you can add more data to the segment.

To monitor the growth of a table or index, use the information in the
RBW_SEGMENTS table (TNAME or INAME, NPSUS, TOTALFREE columns) and
RBW_STORAGE table (SEGNAME, MAXSIZE, USED columns). Default
segments will grow as needed but are limited by file system space.
Maintaining a Data Warehouse 9-13

STAR Indexes
STAR Indexes
When a STAR index is built, its size is based on the maximum number of rows
in the referenced tables, which is calculated based on the values specified in
the MAXROWS PER SEGMENT and MAXSEGMENTS parameters. If you change
the values of these parameters to exceed the maximum number of rows used
to build the STAR index, a message indicates that the STAR indexes based on
that table might not be valid and might need to be either rebuilt with the
REORG command or dropped and re-created. For information about STAR
index growth, refer to “Considerations for Growing Tables” on page 4-48.

To ensure that a STAR index is built with sufficient space to accommodate the
expected growth of the corresponding referenced tables, create each refer-
enced table with MAXROWS PER SEGMENT and MAXSEGMENTS values that
accurately reflect the expected size.

If an error message indicates that one or more STAR indexes are invalid, you
must either perform a REORG operation on those indexes to rebuild the
invalid STAR indexes or drop and re-create the STAR indexes to accommodate
table growth. If space still remains in a default segment, you can use the
REORG command to rebuild the index. If any segments containing the
STAR indexes are full, you must use the ALTER SEGMENT statement to make
space available or create and attach additional segments to the index before
performing the REORG operation.
9-14 Informix Red Brick Decision Server Administrator’s Guide

MAXSIZE Column
MAXSIZE Column
Each PSU is divided into 8-kilobyte (8192-byte) blocks, the minimum
allocation unit for disk storage in Red Brick Decision Server. The MAXSIZE
column in the RBW_STORAGE system table specifies the maximum size in
kilobytes to which a specific PSU (file) in a segment is allowed to grow. The
values in the MAXSIZE and INITSIZE columns do not necessarily match the
MAXSIZE and INITSIZE numbers in the CREATE SEGMENT statement for the
storage file for several reasons:

■ The values in the MAXSIZE columns are always rounded up to the
nearest 8 kilobytes.

■ The first file always contains at least 2 blocks, or 16 kilobytes.

■ MAXSIZE values are dynamically adjusted in certain cases where a
file system runs out of space before a PSU in that file system reaches
its MAXSIZE value.

Example

The following statement creates a segment containing two PSUs, mkt1 and
mkt2:

create segment mkt
storage ’mkt1’ maxsize 38 initsize 16 extendsize 8
storage ’mkt2’ maxsize 30;

The RBW_STORAGE table shows a maximum size of 40 kilobytes for mkt1 and
a maximum size of 32 kilobytes for mkt2 (rounded up to the nearest multiple
of 8 kilobytes).

The MAXSIZE column in the RBW_STORAGE table is an upper limit on the file
size. If the file system on which the PSU resides becomes full before the PSU
has grown to its maximum size and space is available in subsequent PSUs in
the segment, the system dynamically reduces the MAXSIZE value of the PSU
to its current size and starts using the next PSU with space available.
Maintaining a Data Warehouse 9-15

USED Column
USED Column
The USED column in the RBW_STORAGE system table indicates how much of
the PSU has been allocated so far—the largest amount of space the PSU has
ever occupied.This number is not necessarily the amount of space used in the
PSU because some of the USED space might actually be on an internal free-
storage list. The USED value also provides the lower limit on the new
MAXSIZE in the CHANGE MAXSIZE option for the ALTER SEGMENT
statement.

TOTALFREE Column
The TOTALFREE column in the RBW_SEGMENTS system table contains the
amount of free space available to the segment, whether the segment is
associated with an index or a table. This value assumes that the file system(s)
contains sufficient space to allow the segment to grow to its maximum size.

For tables, if no rows have been deleted from a table, the difference between
MAXSIZE and USED space in RBW_STORAGE equals TOTALFREE space in
RBW_SEGMENTS for the segment(s) associated with that table.

Red Brick Decision Server reuses space by row, which means that when a row
is deleted from a table, the next row added to the table is stored in the location
of the last deleted row. Therefore, after several rows residing in a given
segment have been deleted from a table, that segment contains free space
where those rows used to be stored. The value for TOTALFREE measures only
the space that has not yet been used, not the space freed by deleting rows. If
you have deleted large numbers of rows from your table, you might have
more free space than the value of TOTALFREE indicates.

Pseudocolumns
Every user table in a Red Brick Decision Server database has three
pseudocolumns: RBW_ROWNUM, RBW_SEGID, and RBW_SEGNAME. A
pseudocolumn does not take up any space in the system tables but rather
selects bytes stored in the headers of blocks and displays this information in
a column format. Do not include pseudocolumns in calculations of table size.
9-16 Informix Red Brick Decision Server Administrator’s Guide

Pseudocolumns
If you issue a query with pseudocolumns in the select list, they will be written
as columns in the query result. These columns therefore would be part of any
storage space calculations you perform on the query results.

Example

The following example shows the values of the RBW_ROWNUM, RBW_SEGID,
and RBW_SEGNAME pseudocolumns for a query on the Sales table from the
Aroma database:

RISQL> select rbw_rownum, substr(rbw_segname, 1, 20)
> as RBW_SEGNAME, rbw_segid, dollars
> from sales where rbw_rownum < 4;
RBW_ROWNUM RBW_SEGNAME RBW_SEGID DOLLARS

0 DAILY_DATA1 0 34.00
1 DAILY_DATA1 0 60.75
2 DAILY_DATA1 0 270.00
3 DAILY_DATA1 0 36.00
0 DAILY_DATA2 1 348.00
1 DAILY_DATA2 1 123.25
2 DAILY_DATA2 1 121.50
3 DAILY_DATA2 1 56.00

RISQL>

Pseudocolumn Data Type Description

RBW_ROWNUM INTEGER Contains the row number for each row in a
segment, where the first row in the segment is
number 0. Each segment begins its count of
rows with the number 0. Therefore, if you have
multiple segments, you will have multiple rows
where RBW_ROWNUM is equal to a particular
value.

RBW_SEGID SMALLINT Contains a relative segment ID for a given row.
A lower value indicates a segment that comes
before one with a higher value. This value
corresponds to the value in the LOCAL_ID
column of the RBW_SEGMENTS system table.
The values in the RBW_SEGID pseudocolumn
are not necessarily consecutive. The relative
order of the values allows you to determine the
relative order of the segment.

RBW_SEGNAME CHAR(129) Contains the name of the segment where the
data corresponding to a given row is stored.
Maintaining a Data Warehouse 9-17

Adding Space to a Segment
In this example, two rows correspond to the values 0, 1, 2, and 3 in the
RBW_ROWNUM pseudocolumn: one resides in the DAILY_DATA1 segment,
and one resides in the DAILY_DATA2 segment.

Adding Space to a Segment
A segment runs out of space only when all available space in the segment is
allocated, as indicated by a value of zero for the corresponding TOTALFREE
column in the RBW_SEGMENTS system table.

If a PSU runs out of space because the file system is full, the PSU MAXSIZE
parameter is dynamically decreased to the current size of the file. If space is
available in subsequent PSUs in other file systems, the operation continues.

PSUs are used sequentially in the order in which they were defined (by
sequence number in the RBW_STORAGE.PSEQ column). The current PSU is the
one being written to. More space can be added to a PSU only if the segment
containing the PSU is unattached or if the PSU is the current PSU or a subse-
quent PSU. (In other words, you can never add space to a previous PSU once
the next PSU is in use.)

When segments and PSUs are created, only the amount of storage specified
by the INITSIZE value for each PSU is allocated immediately. The rest of the
storage is not allocated until it is needed. Consequently, a file system can fill
before a PSU reaches the limit specified by its MAXSIZE parameter. If this
situation occurs, the warehouse server automatically checks the subsequent
PSUs for available space—either already allocated but unused INITSIZE space
or space on another file system.

If the server finds a PSU with space available, it adjusts the MAXSIZE value for
the partially full PSU and any subsequent unused PSUs on the full file system
to their current sizes (the INITSIZE value for unused PSUs). Then it continues
writing the data to the next PSU with available space, issuing a warning
message to indicate which file systems ran out of space and which PSU is
being used.

However, if no subsequent PSUs have space available in the segment, the
operation terminates with an out-of-space error, and no changes are made to
the MAXSIZE values.
9-18 Informix Red Brick Decision Server Administrator’s Guide

Adding Space to a Segment
Whenever a dynamic adjustment of MAXSIZE values occurs, the following
conditions apply to the affected segment and PSUs:

■ Each new adjusted MAXSIZE value is reflected in the MAXSIZE and
USED columns in the RBW_STORAGE table and the TOTALFREE
column in the RBW_SEGMENTS table.

■ After a PSU is dynamically resized, it cannot be resized again
(manually or dynamically) while it is attached to the same table or
index in order to take advantage of space that becomes available on
the previously full file system. (If space becomes available, the server
can allocate that space to PSUs subsequent to the then-current PSU.)

■ If the table that owns a segment is dropped, but its associated
segments are retained, the effective size of all PSUs reverts to the
MAXSIZE values prior to the dynamic adjustment.

Example

This example illustrates how MAXSIZE is adjusted for the current and subse-
quent PSUs in a segment when the file system containing the PSUs runs out
of space before the PSUs are full.

Assume a table contains a segment that consists of multiple PSUs, p1, p2, p3,
and p4, across multiple file systems on disks d1 and d2. PSU p1 is full, and data
is being written to PSU p2—the current PSU—when the file system on disk d1
fills. PSU p2 has used only 620 out of 680 blocks, and PSU p3 is still empty. The
server automatically adjusts the MAXSIZE value for PSU p2 to 620 and for PSU
p3 to 120 (the INITSIZE value). It writes data to any preallocated INITSIZE
blocks on the full file system, in this case PSU p3, and then begins writing to
the next PSU on a file system with space available, in this case PSU p4 on
disk d2.
Maintaining a Data Warehouse 9-19

Adding Space to a Segment
The following figure and table illustrate this scenario.

MAXSIZE is dynamically decreased in this example, as illustrated in the
following table.

No new space is ever added to a PSU that precedes the current one. If space
later becomes available in the file system on disk d1, that space is not used for
PSU p2 or PSU p3 (while they are attached to the current table or index).

Figure 9-1
PSU Size Adjustments

Disk d2Disk d1

PSU p1

PSU p2

PSU p3

PSU p4

Key to PSUs:

Used
No space
Available space

PSU INITSIZE EXTENDSIZE Original MAXSIZE New MAXSIZE

p1 120 100 680 No change

p2 120 100 680 620

p3 120 100 680 120

p4 300 150 750 No change
9-20 Informix Red Brick Decision Server Administrator’s Guide

Altering Segments
However, if the current PSU is PSU p4 on disk d2 and PSU p5 exists in the file
system on disk d1, space that becomes available on disk d2 can be used by
PSU p5 (or any PSU that follows PSU p4 in the segment storage specification
or was added with an ALTER SEGMENT statement after PSU p4 was defined).
The following figure illustrates this scenario.

Altering Segments
You can use segments to distribute data and indexes over multiple drives and
to allow continued use of a table when some segments are offline or removed
permanently.

ALTER SEGMENT Operations
The operations you can perform on segments are as follows:

■ Attach or detach a segment from a table or its indexes, allowing you
to add new segments as tables grow and to remove segments when
the data in them becomes obsolete. (ATTACH, DETACH)

■ Take a segment offline to load data into it or to detach it from a table
or index, or bring a segment online after it has been loaded with data
or restored from a backup. (OFFLINE, ONLINE)

■ Remove all data from a segment, leaving it attached for reuse.
(CLEAR)

Figure 9-2
Space Use Between Disks

Disk d2Disk d1

PSU p1

PSU p2

PSU p3

PSU p4

Key to PSUs:

Used
No space
Available space

PSU p5
Maintaining a Data Warehouse 9-21

Ensuring No Users Are Active
■ Change the range specification for segments, allowing you to change
how data will be distributed among segments. (RANGE)

■ Add additional PSUs to a segment to accommodate growing tables.
(ADD STORAGE)

■ Change the maximum size, the extend size, or the path of PSUs,
allowing you to control their growth and move them as needed.
(CHANGE MAXSIZE, CHANGE EXTENDSIZE, CHANGE PATH)

■ Rename the segment as needed for easier identification. (RENAME)

■ Specify a segmenting column, allowing you to segment a table or
index that originally was created in a single default segment and
therefore was not defined with a segmenting column. (SEGMENT BY)

■ Verify that the PSUs (files) that make up the segment are physically
intact and determine what is wrong if a segment is damaged.
(VERIFY)

■ Force an undamaged segment that has been marked “damaged” into
an intact state. (FORCE INTACT)

You must have DBA authorization or be the creator of a segment to alter it.

If a segment is the backup segment for use with SQL-BackTrack, not all ALTER
SEGMENT operations are valid. For information about the backup segment,
refer to the Informix Red Brick SQL-BackTrack User’s Guide.

Ensuring No Users Are Active
Before using the ALTER SEGMENT statement, ensure that no users are
accessing any objects affected by the ALTER SEGMENT operation. Unless you
are sure that no users are logged into the database, use either a
LOCK DATABASE statement or an ALTER SYSTEM QUIESCE statement. If
objects in the database are being accessed, the ALTER SEGMENT operation
might fail.

Lock the database with the LOCK DATABASE statement to ensure exclusive
access and unlock it with the UNLOCK DATABASE statement when finished,
as follows:

lock database;
alter segment …;
unlock database;
9-22 Informix Red Brick Decision Server Administrator’s Guide

Attaching and Detaching Segments
For a slightly less disruptive action than locking the database, suspend all
new commands for a database with the ALTER SYSTEM QUIESCE statement
and then resume activity on the database, as follows:

alter system quiesce;
alter segment …;
alter system resume;

The following sections describe the tasks you can perform with the ALTER
SEGMENT statement. For syntax descriptions and more detailed information,
refer to the SQL Reference Guide.

Attaching and Detaching Segments
As tables increase or decrease in size or access patterns change, you can
attach or detach segments for the tables or their indexes to meet your needs.
You cannot attach segments to tables segmented by hashing.

A segment must exist before it can be attached. Create user-defined segments
with a CREATE SEGMENT statement and default segments with a CREATE
TABLE or CREATE INDEX statement. Newly attached segments are automati-
cally set to ONLINE mode.

To attach a segment to a table or its B-TREE or TARGET index, supply a valid
range specifier based on the data type of the segmenting column. To attach a
segment to a STAR index, the range is optional but must be based on the
segment name and row numbers (RBW_ROWNUM pseudocolumn) of the
segmenting column for the referenced (dimension) table. The segmenting
column of the referenced table is defined in the CREATE TABLE statement.

Detaching a segment removes the segment from the table or index and
removes all the row data or index entries in the segment. User-created
segments are not deleted but remain empty and available for re-attachment
to another object. Default segments are deleted.

To move a segment from one end of the segment range to the other—for
example, if you are dropping the oldest data in a time-cyclic database and
want to reuse the segment for the new data— detach the segment and attach
it with a new range specification.
Maintaining a Data Warehouse 9-23

Moving Entire Segments
Moving Entire Segments
You can move an entire segment from one location to another; for example,
from one disk to another and between disk and optical storage. Use the
ALTER SEGMENT…MIGRATE TO statement. For the syntax of ALTER
SEGMENT and for details on the MIGRATE TO clause, refer to the SQL
Reference Guide.

Specifying a Segmenting Column
If a table or index resides in a single segment and no segmenting column was
specified when the table or index was created, you must define a segmenting
column before you can attach additional segments.

You cannot specify a segmenting column to change the segmenting column
of a table or index or to assign a segmenting column to a table or index that
is segmented by hash values.

Specifying a Range
To change the range of data or index entries that reside in a segment, specify
a new range of data values or row numbers for the segment. Range modifi-
cations cannot leave any gaps or overlaps in the segmentation ranges for the
table or index nor can they require the movement of any row data or index
entries from one segment to another.

Taking a Segment Offline or Online
Taking a segment offline makes the segment temporarily unavailable to users
while allowing partial access to the rest of the table. Offline mode is useful
when you need to load additional data or restore a damaged segment but still
want to keep the remainder of the table or index available to users. You must
take a segment offline before you can detach it.

You can control how the partial unavailability of a table or index affects users
with the SET PARTIAL AVAILABILITY options in the rbw.config file. For more
information about partial availability, refer to “Partial Availability of Tables
and Indexes” on page 2-13.
9-24 Informix Red Brick Decision Server Administrator’s Guide

Clearing a Segment
After you have finished modifying an offline segment, you need to
synchronize the segment (the data and index structures) with the rest of the
table or index. Use a TMU SYNCH command. For more information about the
SYNCH command, refer to the Table Management Utility Reference Guide.

Tip: You cannot take all segments of a table or index offline. At least one segment
must remain online. This restriction means you can neither take the last remaining
online segment of a multisegment table or index offline nor take the only segment of
a single-segment table or index offline.

Clearing a Segment
Clearing a data segment removes all the data from it, as well as the index
entries that reference that data. You can clear a segment only if it is one of
multiple data segments attached to a table. You cannot clear index segments.

Renaming a Segment
You can rename a user-created or default segment while it is attached to or
detached from a table or index. The primary reason to rename a segment is
to give it a meaningful, relevant name.

Changing PSU Sizes
You can change the MAXSIZE and EXTENDSIZE values for a PSU in order to
effectively manage disk storage as database tables, indexes, and access
patterns change. For example, if a segment runs out of space, you can change
the MAXSIZE value of the last PSU in the segment to allow that segment to
continue to grow.

The INITSIZE parameter (which you cannot change) determines how much
disk space is allocated when the segment is created. The default value for
INITSIZE is 16 kilobytes. The server allocates additional space only as data is
stored in the PSU. It is allocated by the amount specified for the EXTENDSIZE
value (rounded up to the nearest 8-kilobyte multiple). The default
EXTENDSIZE value is 8 kilobytes. A PSU grows to its MAXSIZE value unless
the file system becomes full before the MAXSIZE value is reached. In this case,
the system dynamically changes the MAXSIZE value, as described on
page 9-18.
Maintaining a Data Warehouse 9-25

Changing PSU Location
Changing PSU Location
You can change the location of a PSU in order to effectively manage disk
storage as database tables, indexes, and access patterns change.

Warning: After using the CHANGE PATH option, you must perform a complete (level
0) backup before you can perform an incremental backup.

To change the location of a PSU, move it from one physical location to another
(that is, change its filename) with an operating-system move or copy
operation and update the RBW_STORAGE system table with the CHANGE
PATH option to reflect the new location. The order in which you perform
these operations does not matter. You can move the file first and then update
RBW_STORAGE or vice versa, but prevent user access while the operation is
in progress by locking the affected table. If you are moving several PSUs, lock
the database to ensure that you can complete all the changes to
RBW_STORAGE before users attempt to access PSUs in transition.

Use caution when moving files, especially files of the same size and with
similar names. If you do not correctly correlate the pathname and object,
system corruption might result. If you change the path of the wrong object,
but realize your mistake before running the TMU or making any modifica-
tions (INSERT, UPDATE, or DELETE) to that object, you can reverse the
operation by executing this option again with the correct name.

You must also use the CHANGE PATH command if you are moving or copying
a table or database containing full pathnames. For example, if you want to
move a table in a database, you can copy all the PSUs in the table to the new
location and then use this option for each relocated PSU to specify the new
location (pathname) for each PSU.

Verifying a Segment
You can determine whether a segment is damaged—that is, PSUs in the
segment cannot be opened—and what the damage is with the ALTER
SEGMENT…VERIFY option. After you have repaired the damage, use the
VERIFY option as part of the recovery process to make sure the damage has
been fixed and the PSUs can be accessed. The VERIFY option does not actually
repair damage, nor does it bring a segment online.
9-26 Informix Red Brick Decision Server Administrator’s Guide

Forcing a Segment into an Intact State
Forcing a Segment into an Intact State
Sometimes a segment is marked damaged after minor or transient access
errors have occurred, and the segment cannot be opened even though the
PSUs are physically intact. For example, if the file system is not mounted
when a query is issued, or if transient NFS errors occur on UNIX, the inacces-
sible segment is marked as damaged even though there is no actual damage.

If you are certain that the PSUs are physically intact, you can quickly mark the
segment intact with the FORCE INTACT option. This option marks the
segment intact in the INTACT column of the RBW_SEGMENTS table but does
not examine each PSU for physical damage. (The VERIFY option actually
examines each PSU for physical damage and takes more time to execute.)

Warning: Use the FORCE INTACT option only when you know the segment is
undamaged. If you are uncertain, use the VERIFY option.

Recovering a Damaged Segment
Occasionally an operation on a table or index fails with a message that a
segment is damaged, or the ALTER SEGMENT…VERIFY statement might
indicate that a segment is damaged. The damage is to a PSU (file) within the
segment, causing the PSU, the segment, and the table or index to be placed in
a damaged state the first time that PSU is accessed.

A PSU is marked damaged (not intact) in the RBW_STORAGE system table for
any of the following reasons:

■ File cannot be found.

■ Permissions are inadequate.

■ I/O errors or other operating-system errors are encountered trying to
open and read a PSU (file). This type of error might indicate hardware
failure that has corrupted the database.

NFS errors of a transient nature are caused by network loading. This type of
error generally does not indicate database corruption.
Maintaining a Data Warehouse 9-27

Recovering a Damaged Segment
If a segment is damaged, the table or index cannot be accessed while the
damaged segment is online. To provide users with partial access to a multi-
segment table or index with a damaged segment, take the segment offline
while you fix the problem.

To recover a damaged segment, you must determine which segment is
damaged and what the damage is, repair the damage, and then complete the
recovery process.

To recover a damaged segment

1. Determine which segment is damaged.

You can determine which segment is damaged either from the error
message, which is the easier alternative, or from the system tables if
the message is not available. RBW_TABLES, RBW_INDEXES, and
RBW_SEGMENTS each contain a column named INTACT. An INTACT
value of N indicates that the table, index, or segment in question is
damaged.

To find a damaged table or index, enter the appropriate query.
select name, intact from rbw_tables where intact = ’N’;
select name, intact from rbw_indexes where intact =
’N’;

To find which segment(s) is damaged, enter a query similar to the
following one:

select name, tname, iname, intact from rbw_segments
where intact = ’N’;

2. If you are certain the PSU is not damaged but was so marked for
minor or transient access errors, you can use the ALTER
SEGMENT…FORCE INTACT statement for both online and offline
segments to mark the segment and table or index intact.

alter segment seg_name of table table_name force intact;
alter segment seg_name of index index_name force intact;

This statement does not verify the accessibility or integrity of the
PSU, but it permits you to avoid a time-consuming verification when
you know a PSU has no actual damage.

If you use the FORCE INTACT option, skip to step 7. Otherwise,
continue with step 3.

3. If the damaged segment is part of a multisegment table or index,
decide whether to take the segment offline to provide users with
partial availability of the table or index.
9-28 Informix Red Brick Decision Server Administrator’s Guide

Managing Optical Storage
4. Determine the cause of the damage with the ALTER
SEGMENT…VERIFY statement by entering the appropriate query.

alter segment seg_name of table table_name verify;
alter segment seg_name of index index_name verify;

The ALTER SEGMENT…ONLINE statement performs the same verifi-
cation tasks and returns the same information as the VERIFY option.
However, this statement cannot be used on segments already online.

5. After you have determined what the damage is, you need to repair
it. Problems such as insufficient permission on PSU files or files that
are in the wrong directory are easy to remedy. Other problems can be
more difficult or impossible to fix, so you might need to restore the
segment from a backup or perhaps restore the full database. For
information about restore operations with the SQL-BackTrack option,
refer to the Informix Red Brick SQL-BackTrack User’s Guide.

6. To confirm that the damage is repaired, use the statement ALTER
TABLE…VERIFY.

7. If the segment is offline, set it to ONLINE mode with the statement
ALTER SEGMENT…ONLINE .

Managing Optical Storage
Optical storage devices provide direct-access secondary storage that is faster
than tape and less expensive than disk. The use of optical storage offers you
additional flexibility in determining how much data to store for how long.
The data stored on optical devices is accessed just like data on magnetic
disks. Although the access time is longer, the cost is significantly less. Optical
devices are a good choice for infrequently accessed data that you neither
want to relegate to tape archives (because it is needed occasionally) nor want
to store on magnetic disks (because they are more expensive).

Because the access time is longer, you can specify whether queries and certain
other commands should wait for or skip data and indexes in optical storage.
You can also specify whether STAR indexes that reside partly or entirely in
optical storage should be considered when an index is chosen, just as you do
for offline segments.
Maintaining a Data Warehouse 9-29

Assigning Optical Storage
This section discusses optical storage support in terms of:

■ Assigning optical storage.

■ Moving entire segments among various types of storage.

■ Specifying access behavior when row data and indexes reside on
optical storage (OPTICAL_AVAILABILITY option).

■ Specifying whether STAR indexes that reside on optical storage
should be considered when an index is selected
(IGNORE_OPTICAL_INDEXES option).

Assigning Optical Storage
To place an entire segment or specific PSUs on optical storage devices, specify
pathnames that point to an optical device in the CREATE SEGMENT or ALTER
SEGMENT statements.

To assign the optical property to a segment, include the OPTICAL ON option
in the following statement:

ALTER SEGMENT seg_name [| OF TABLE table_name | OF INDEX
index_name] OPTICAL [ON | OFF]

If a segment contains any PSUs that reside on an optical storage device, the
segment is considered an optical segment. You can determine whether a
specific segment is an optical segment by using the segment name or segment
ID to check its value in the OPTICAL column in the RBW_SEGMENTS system
table:

select optical from rbw_segments where name = ’seg_name’

You can also search the RBW_SEGMENTS system table for optical segments.

select name, id from rbw_segments where optical = ’Y’
9-30 Informix Red Brick Decision Server Administrator’s Guide

Specifying Access Behavior for Optical Segments
Specifying Access Behavior for Optical Segments
The optical availability option can be set either in the rbw.config file or with
SET commands. The response to queries or commands that require access to
data or indexes in optical segments depends on both the setting for the
OPTICAL_AVAILABILITY option and whether the query or command involves
read or write operations. Statements affected by this option are:

■ Read operations: SELECT and TMU UNLOAD

■ Write operations:

❑ ALTER TABLE and DROP TABLE

❑ CREATE INDEX and ALTER INDEX

❑ ALTER SEGMENT

❑ INSERT, UPDATE, and DELETE

❑ TMU LOAD DATA and REORG

You can determine or verify access behavior with respect to optical segments
by checking the OPTICAL_AVAILABILITY entry in the RBW_OPTIONS table
with a query similar to the following one:

select substr(option_name, 1, 30), substr(value, 1, 12)
from rbw_options
where option_name like ’OPTICAL%’

and username = CURRENT_USER;

OPTICAL_AVAILABILITY WAIT_NONE

To specify access behavior with optical segments for all sessions, enter the
following line in the rbw.config file:

rbw.config file entry:OPTION OPTICAL_AVAILABILITY INFO

To specify the query behavior for specific sessions, enter a SET command
using the following syntax:

SET command: set optical availability error

For a complete list of the optical availability settings, refer to the SQL
Reference Guide.
Maintaining a Data Warehouse 9-31

Specifying Index Selection with Optical Segments
Specifying Index Selection with Optical Segments
Whether indexes with PSUs that reside on optical storage are considered
when the best index for a query is selected depends on the setting of the
IGNORE_OPTICAL_INDEXES option. If a query is processed and an error or
warning message indicates that an optical index was accessed, but you know
that other fully available but less optimal indexes exist, you can set the
IGNORE_OPTICAL_INDEXES option to force the use of an index not residing
on optical storage.

Tip: In most cases, frequently used indexes do not reside in optical segments. Storing
an index on slower optical devices defeats the purpose of the index.

To determine whether indexes with optical segments are considered during
index selection, check the IGNORE_OPTICAL_INDEXES entry in the
RBW_OPTIONS table with a query similar to the following one:

select substr(option_name, 1, 30), substr(value, 1, 12)
from rbw_options
where option_name like ’IGNORE_OPTICAL%’

and username = CURRENT_USER;

IGNORE_OPTICAL_INDEXES OFF

To specify the use of indexes in optical segments for all sessions, enter a line
in the rbw.config file.

OPTION IGNORE _OPTICAL_INDEXES [OFF | ON]

To specify the use of indexes that are stored in optical segments for specific
sessions, enter a SET command. The default setting is ON.

set ignore optical indexes [OFF | ON]
9-32 Informix Red Brick Decision Server Administrator’s Guide

Altering Tables
Altering Tables
You can make the following changes to a table with the ALTER TABLE
statement:

■ Add or drop a column.

■ Change a column name.

■ Change a column default value.

■ Change the specified maximum number of rows (MAXROWS PER
SEGMENT and MAXSEGMENTS) in a table.

■ Change the action taken to maintain referential integrity during
delete operations that affect a specified table.

■ Add or drop a foreign key.

■ Change the fill factor of a VARCHAR column.

Informix recommends that you make a backup of a table and its associated
indexes before you perform an ALTER TABLE operation on it. Also, whenever
you make a change to a table with an ALTER TABLE operation, it is a good idea
to update CREATE TABLE statements to reflect the changes you made so you
can re-create the table from scratch, if necessary.

For information about high performance backup and restore operations with
the SQL-BackTrack option, refer to the Informix Red Brick SQL-BackTrack User’s
Guide.

The following sections describe the tasks you can perform with the ALTER
TABLE statement and recovery from an interrupted ALTER TABLE operation.
For syntax of this statement, refer to the SQL Reference Guide.

Warning: ALTER TABLE statements are best done with the IN segment option, which
writes the altered table to a new segment. The IN_PLACE option rewrites the table to
the same segment. In the event of a failure in the operation, the table is left in disarray.
If you want to alter the table in place, as you might if you have a large table and not
enough disk space, make a backup copy first.
Maintaining a Data Warehouse 9-33

Adding and Dropping Columns
Adding and Dropping Columns
You can add or drop one or more columns with a single ALTER TABLE
statement.

When a new column is added with ALTER TABLE…ADD COLUMN, it is added
at the end of the table. If multiple columns are added, they are added in the
order named. Adding a column does not affect a view because column refer-
ences are resolved when the view is created.

When a new column is dropped with ALTER TABLE…DROP COLUMN, its data
is removed from the table. The operation is not reversible. A column cannot
be dropped if it is part of a primary key, part of a foreign key, part of an index
key, or referenced by a view.

When you add or drop a column, you can either specify that the changes take
place in the existing table location (IN PLACE) or provide another location
(one or more segments) in which the altered table will be built. If the table is
built in another location, the original table is removed when the changes are
complete. The advantage to building the table in another location is that
recovery is easier if the operation is interrupted. However, it requires space
for two tables. In either case, there must be enough space to hold the
modified table.

Changing a Column Name
You can change a column name with an ALTER TABLE…ALTER COLUMN…
RENAME statement. The new name must be unique in the table.

Changing the Default Value for a Column
You can change the default value for a column with an ALTER TABLE…ALTER
COLUMN… SET DEFAULT statement. The default value is the value that is
loaded into a column when the input record was empty or did not contain
valid input data. This default value is also used with the TMU Automatic
Row Generation option.

For more information about Automatic Row Generation, refer to the Table
Management Utility Reference Guide.
9-34 Informix Red Brick Decision Server Administrator’s Guide

Changing the MAXSEGMENTS and MAXROWS PER SEGMENTS Values
Changing the MAXSEGMENTS and MAXROWS PER
SEGMENTS Values
The MAXSEGMENTS and MAXROWS PER SEGMENT parameters specify the
estimated maximum number of rows in the table. These values are used to
build a STAR index and to validate segmentation of STAR indexes. If you need
to add more rows or segments than these parameters allow, use ALTER TABLE
to increase the MAXSEGMENTS and MAXROWS PER SEGMENT values.

If the table is in a default segment, the segment grows as needed to accom-
modate the extra rows. However, if the table is in a user-defined segment,
check the MAXSIZE_ROWS value for that table in the RBW_TABLES system
table before you change MAXSEGMENTS and MAXROWS PER SEGMENT. If
the new value of MAXSEGMENTS multiplied by the new value of
MAXROWS PER SEGMENT is greater than MAXSIZE_ROWS, the table will
outgrow the segment before you reach the new limit. At this point, you must
use ALTER SEGMENT to increase the MAXSIZE value of the segment.

For information on setting these parameters and the possible cause of errors
involving maximum number of rows per segment, refer to “Setting the
MAXSEGMENTS and MAXROWS PER SEGMENT Parameters” on
page 5-12.

Changing the Way Referential Integrity Is Maintained
You can change the way referential integrity is maintained for a given table
with an ALTER TABLE…ALTER COLUMN…ON DELETE statement. If a foreign
key in a table references another table, the ON DELETE clause lets you specify
whether:

■ A delete action in the referenced table cascades into the referencing
table.

■ No delete action is performed on either table.

For more information about referential integrity and cascaded deletes, refer
to “Delete Operations and Cascaded Deletes” on page 2-40.
Maintaining a Data Warehouse 9-35

Changing the Data Type for a Column
Changing the Data Type for a Column
You might want to change a column data type; for example, to change a
TINYINT to a SMALLINT column or to change a numeric external to a date
data type.

If a CHAR column has values of widely differing lengths, you can decrease its
storage space by changing the data type to VARCHAR. Although a VARCHAR
column might use less storage space, an update to a VARCHAR column can
sometimes cause the row to be stored less efficiently if the new row is longer
than the old row. This slows down all subsequent accesses to that row.
Informix recommends using the CHAR data type for columns that are
frequently updated.

Tip: A VARCHAR column header is 2 bytes longer than that of a CHAR column. Do
not use VARCHAR for short columns (particularly those shorter than 6 bytes) or for
columns with data that is all the same length, such as a telephone number field.

To change the data type of a column

1. Use ALTER TABLE to add a new column of the desired data type. The
column must have a unique name not already used in the table.

2. Use an UPDATE statement to copy the data from the old column to
the new column.

3. Use ALTER TABLE to drop the old column.

4. Use ALTER TABLE to rename the new column.

To maintain availability of the table during this or similar actions that place
read locks on an entire table, you might want to use versioning. For more
information, refer to Chapter 6, “Working with a Versioned Database.”
9-36 Informix Red Brick Decision Server Administrator’s Guide

Adding and Dropping Foreign Keys
Adding and Dropping Foreign Keys
Sometimes a referenced table must be added or dropped from a schema.
There are many reasons why this might occur. For example, a reorganization
of the sales force might require the addition of a new district table to a sales
database, or a merger might necessitate a new type of product that is different
enough to warrant a new table. You might want to associate these new tables
with another table by adding a foreign key reference from an existing table.
You can do this with an ALTER TABLE...ADD FOREIGN KEY operation on the
existing table. With the ALTER TABLE...ADD FOREIGN KEY specification, you
can also add a new constraint to the table, as long as the new constraint name
is unique.

You must meet the following requirements in order to add a foreign key:

■ The referenced table must exist.

■ A primary key index must exist on the referenced table (This index is
created automatically when the table is created.)

■ The column names named for the foreign key must exist.

■ The columns must be declared NOT NULL.

■ The data type and length of the referenced columns must exactly
match those in the primary key of the referenced table.

■ The data must not violate referential integrity.

The data is retrieved to check for referential integrity violations when you
add the foreign key, if data exists. If a referential integrity violation occurs,
the ALTER TABLE operation terminates with an error, and the table is restored
to its original state. For large tables, the referential integrity checking can take
some time.

Similarly, you might have a referenced table that is no longer needed and
want to drop both the table and the foreign key reference to it. You can do this
with an ALTER TABLE... DROP CONSTRAINT operation on the existing table.
No STAR index must exist on the constraint. Otherwise, the ALTER TABLE
statement fails.

For the complete syntax and usage of the ALTER TABLE statement, refer to the
SQL Reference Guide.
Maintaining a Data Warehouse 9-37

Changing the Fill Factor for a VARCHAR Column
Changing the Fill Factor for a VARCHAR Column
To adjust the fill factor for a VARCHAR column, use the ALTER TABLE
CHANGE FILLFACTOR statement. This statement does not take effect until
you execute an ALTER TABLE statement to add or drop a column when the
whole table is rewritten using the new fill factor.

For more information, refer to “Setting the VARCHAR Column Fill Factor”
on page 10-28.

Recovering from an Interrupted ALTER TABLE Operation
Occasionally an ALTER TABLE operation is interrupted before it completes.
Several possible recovery options exist. The option you choose depends both
on the cause of the interruption and whether the table was being altered with
the IN PLACE option.

Recovering the Table

After dealing with the cause of the interrupt, you have three choices for
recovering the table, depending on the state of the table when the interrupt
occurred:

■ You can resume the alter operation and let it run to completion. This
alternative is useful when much of the work has already been done.

■ You can reset the table to its original state and re-issue the original
ALTER TABLE statement. This alternative makes sense when little of
the work has been done. If, however, you are using the IN PLACE
option, you cannot reset the table. You must either resume the
operation or restore the table from a backup.

■ You can restore the database or just the segments containing the table
from a backup. If the backup was current, the table is restored to its
state before the ALTER TABLE statement was issued. If the backup is
not current, the restored table might not reflect its latest state.

Warning: If you are altering the table with the IN PLACE option, you should have a
current database backup before beginning an ALTER TABLE statement.
9-38 Informix Red Brick Decision Server Administrator’s Guide

Recovering from an Interrupted ALTER TABLE Operation
Interruptions: Causes and Prevention

Interruptions can be caused by:

■ Privilege violations

To prevent interruptions from privilege violations, make sure the
user executing the operation has the necessary file system
read/write privileges, as well as the required database authority and
object privileges.

■ Out-of-space errors

The ALTER TABLE statement calculates how much space is required
for the operation. It compares this requirement with the maximum
space defined for the segment (the sum of the PSU MAXSIZE values)
and does not begin the operation if the requirement exceeds the
defined space.

To prevent interruptions from out-of-space errors, carefully estimate
the amount of space required for the altered table and verify that the
required space is really available before beginning an ALTER TABLE
statement.

Consider the following to prevent out-of space errors:

❑ The maximum space defined is not necessarily the space
allocated. Even though the ALTER TABLE statement calculates
that enough space is available, some of that space might not be
available. Only the space specified as the INITSIZE value for each
PSU is actually allocated when the segment is created.

❑ Because the VARCHAR column fill factor is an estimate set by the
database administrator, allow extra space for overflows when
setting the MAXSIZE value for a segment that contains tables
with VARCHAR columns.
Maintaining a Data Warehouse 9-39

Copying or Moving a Database
■ Cancel (CTRL-C) or kill commands, system crashes, or power failures

Preventing these types of interruptions is more difficult. Although
you cannot anticipate every situation, planning can help you avoid
these types of interruptions and deal effectively with them when
they happen. Always keep regular backups of your system. Have
procedures in place to restore your system so recovery is easy and
predictable in the event of a catastrophic failure. Avoid canceling
long LOAD operations unless it is absolutely necessary, especially if
you have to force a cancel using an operating-system utility (for
example, kill -9 on UNIX or pview on Windows NT); such operations
can leave the data in an inconsistent state.

Copying or Moving a Database
To make a copy of a database for training or testing or to move a database to
a new location, you can use combinations of SQL statements and operating-
system and TMU commands.

The rb_cm copy management utility facilitates the movement of data among
databases. For more information on the rb_cm copy management utility, refer
to the Table Management Utility Reference Guide.

Warning: It is safer to move a database without a version log. If your database
contains a version log, drop it before moving the database, and re-create it after the
move is complete.

Full Versus Relative Pathnames
Because either full or relative pathnames can be stored in the system tables,
simply copying the files to a new location is not always sufficient to ensure
that the pathnames point to the copy and not the original database. A full
pathname begins with a slash (/) on UNIX or a back slash (\) on
Windows NT. A relative pathname is any pathname that does not begin with
a slash. The server constructs relative pathnames relative to the RB_PATH
environment variable. (If RB_PATH is not explicitly defined, it is implicitly
defined by the logical database name in the rbw.config file.)
9-40 Informix Red Brick Decision Server Administrator’s Guide

Full Versus Relative Pathnames
The system tables contain only relative pathnames when both of the
following conditions are true:

■ Each pathname supplied for all PSUs in all CREATE SEGMENT state-
ments present in the database is specified as a relative pathname.

■ Each location specified with OPTION DEFAULT_DATA _SEGMENT
and OPTION DEFAULT_INDEX_SEGMENT entries in the rbw.config file
is specified as a relative pathname.

Conversely, the system tables contain (some) full pathnames when either of
the following conditions is true:

■ The pathname for any file (PSU) in a CREATE SEGMENT statement is
not a relative pathname.

■ The pathname for either OPTION DEFAULT_DATA _SEGMENT or
OPTION DEFAULT_INDEX_SEGMENT is not a relative pathname.

To determine whether the database uses full pathnames, enter the following
query:

select segname, pseq, location from rbw_storage
where substr(location, 1, 1) = ’/’;

♦

select segname, pseq, location from rbw_storage
where substr(location, 1, 2) = ’:’

and (substr(location, 1, 3) = ’\’ ;

♦

This statement returns the names of all files (PSUs) that use full pathnames.

After you have determined whether the database to be copied or moved
contains any full pathnames, use the following procedures to ensure a
successful copy or move operation.

Tip: A database built on a specific platform can be copied only to other locations of
the same platform type. For example, a database built on a Solaris platform cannot be
copied or moved to an HP 9000 platform or vice versa. To copy or move a database
from one platform to another, use the TMU UNLOAD…EXTERNAL operation. Then
rebuild the database on the new platform using the data and the CREATE TABLE and
LOAD DATA statements generated by the UNLOAD EXTERNAL operation.

UNIX

WIN NT
Maintaining a Data Warehouse 9-41

Copying a Database That Contains Only Relative Pathnames
Copying a Database That Contains Only Relative
Pathnames
A database that contains only relative pathnames is the easiest kind to copy:

1. Verify that the new location contains enough space to hold the
database and that the redbrick user can write to the new location.

2. As the redbrick user, make a new directory for the database in the new
location.

3. Copy the contents of the existing database directory to the new
directory.

4. Add a logical name for the copied database to the rbw.config file.

Copying a Database That Contains Full Pathnames
If the database contains any full pathnames, use one of the following
methods to copy it to a new location.

Method 1

This method is preferred because there is less chance of entering the wrong
filenames or pathnames, which might result in unexpected database
corruption:

1. Use the TMU UNLOAD…EXTERNAL command to unload the
database records to tape or disk. (The TMU also creates the CREATE
TABLE, CREATE INDEX, and LOAD DATA statements needed to
rebuild the tables and reload the data.)

2. Verify that the new location contains enough space to hold the
database and that the redbrick user can write to the new location.

3. As the redbrick user, make a new directory for the database in the new
location.

4. Use the CREATE TABLE and CREATE INDEX statements generated in
step 1 to re-create the tables and indexes in the new directory.

5. Use the LOAD DATA statements generated in step 1 to reload the new
tables with the data.

6. Add a logical name for the copied database to the rbw.config file.
9-42 Informix Red Brick Decision Server Administrator’s Guide

Moving a Database That Contains Only Relative Pathnames
Tip: You can perform a variation of this procedure using the rb_cm copy
management utility. The rb_cm utility pipes UNLOAD output to LOAD input,
allowing you to move table data over a network without ever writing to tape or to
disk. For more information about the rb_cm utility, refer to the “Table Management
Utility Reference Guide.”

Method 2

This method is riskier because there are more opportunities for error in
entering pathnames:

1. Verify that the new location contains enough space to hold the
database and that the redbrick user can write to the new location.

2. As the redbrick user, make a new directory for the database in the new
location.

3. Copy all files from the existing database directory to the new
directory.

4. Copy all files with full pathnames to the new directory.

5. As a database user with DBA authorization or the creator of the
segment, use the ALTER SEGMENT…CHANGE PATH statement to
change the path for each segment that uses a full pathname to the
new pathname (the name of the copy).

6. Add a logical name for the copied database to the rbw.config file.

Moving a Database That Contains Only Relative Pathnames
A database that contains only relative pathnames is the easiest kind to move:

1. Verify that the new location contains enough space to hold the
database and that the redbrick user can write to the new location.

2. As the redbrick user, make a new directory for the database in the new
location.

3. Copy all files from the existing database directory to the new
directory and then delete the original files.

4. Change the logical database name in the rbw.config file to the new
location.
Maintaining a Data Warehouse 9-43

Moving a Database That Contains Full Pathnames
Moving a Database That Contains Full Pathnames
If the database contains any full pathnames, use the following method to
move it to a new location:

1. Verify that the new location contains enough space to hold the
database and that the redbrick user can write to the new location.

2. As the redbrick user, make a new directory for the database in the new
location.

3. Use the cp command to copy all files from the existing database
directory to the new directory and then delete the original files.

4. If you want to leave the files named with full pathnames in their
current location, you are finished. Go to step 7.

5. If you want to move any files named with full pathnames to a new
location, copy each file from its existing location to its new location
and then delete the original file.

6. For each file that you moved in the previous step, as a user with DBA
authorization or the creator of the segment containing that file, use
the ALTER SEGMENT…CHANGE PATH statement to change the path
to the new location.

7. Change the logical database name in the rbw.config file to the new
location.
9-44 Informix Red Brick Decision Server Administrator’s Guide

Modifying the Configuration File
Modifying the Configuration File
The configuration file, rbw.config, is created when the server software is
installed, using information provided during the installation procedure. This
information is used by the server and by the TMU.

As the redbrick user, you can edit the rbw.config file (using any standard text
editor) as conditions at your site change. Changes you make to this file have
various effects on the processes that use it.

Refer to the following table to determine what other actions you must take.UNIX

Change Action Required

SERVER, SHMEM, or MAPFILE Stop and restart warehouse daemon.

MAX_SERVERS,
MAX_ACTIVE_DATABASES,
PROCESS_CHECKING_INTERVAL

■ Stop warehouse daemon.

■ Use ipcrm to remove prior memory segment or reboot
(this step is only necessary after severe errors occur).

■ Restart warehouse daemon.

CLEANUP_SCRIPT, LOGFILE_SIZE,
QUERYPROCS, TOTALQUERYPROCS,
ADMINADVISOR_LOGGING

Stop and restart warehouse daemon.

SERVER_NAME, MESSAGE_DIR, LOCALE Do not change.

INTERVAL Stop and restart server-monitoring daemon
(rbw.servermon).

License keys No action needed. Current TMU and server processes do
not recognize, but new processes will.

 (1 of 3)
Maintaining a Data Warehouse 9-45

Modifying the Configuration File
FILE_GROUP
ROWS_PER_SCAN_TASK
ROWS_PER_FETCH_TASK
ROWS_PER_JOIN_TASK
FORCE_SCAN_TASKS
FORCE_FETCH_TASKS
FORCE_JOIN_TASKS
FORCE_HASHJOIN_TASKS
FORCE_AGGREGATION_TASKS
PARTIONED_PARALLEL_AGGREGATION
CROSS_JOIN
ARITHABORT
ALLOW_POSSIBLE_DEADLOCKS
DEFAULT_DATA_SEGMENT
DEFAULT_INDEX_SEGMENT
TEMPORARY_DATA_SEGMENT
TEMPORARY_INDEX_SEGMENT
OPTION ADVISOR_LOGGING
PRECOMPUTED_VIEW parameters
SEGMENTS
IGNORE_PARTIAL_INDEXES
PARTIAL_AVAILABILITY
QUERY_TEMPSPACE parameters
RESULT_BUFFER
RESULT_BUFFER_FULL_ACTION
VERSIONING
TRANSACTION_ISOLATION_LEVEL

No action needed. Current server processes do not
recognize, but new processes will.

Change Action Required

 (2 of 3)
9-46 Informix Red Brick Decision Server Administrator’s Guide

Modifying the Configuration File
♦

Refer to the following table to determine what other actions you must take.

TMU_BUFFERS
TMU_OPTIMIZE
TMU_CONVERSION_TASKS
TMU_INDEX_TASKS
TMU_SERIAL_MODE
AUTOROWGEN
TMU_VERSIONING
TMU_COMMIT_RECORD_INTERVAL
TMU_COMMIT_TIME_INTERVAL

No action needed. Current TMU processes do not
recognize, but new processes will.

FILLFACTOR parameters
INDEX_TEMPSPACE parameters
PASSWORD parameters

No action needed. Current server and TMU processes do
not recognize, but new processes will.

Change Action Required

 (3 of 3)

WIN NT

Change Action Required

SERVER
MAX_SERVERS
CLEANUP_SCRIPT
LOGFILE_SIZE
ADMIN ADVISOR_LOGGING
UNIFIED_LOGON
MAX_ACTIVE_DATABASES
PROCESS_CHECKING_INTERVAL

From the Control Panel, stop the warehouse service and
then restart it.

SERVER_NAME
MESSAGE_DIR
LOCALE

Set during installation. Do not change.

License keys No action needed. Current server threads and TMU
processes do not recognize, but new ones will.

 (1 of 2)
Maintaining a Data Warehouse 9-47

Modifying the Configuration File
♦

ARITHABORT
ALLOW_POSSIBLE_DEADLOCKS
DEFAULT_DATA_SEGMENT
DEFAULT_INDEX_SEGMENT
TEMPORARY_DATA_SEGMENT
TEMPORARY_INDEX_SEGMENT
OPTION ADVISOR_LOGGING
PRECOMPUTED_VIEW parameters
SEGMENTS
IGNORE_PARTIAL_INDEXES
PARTIAL_AVAILABILITY
QUERY_MEMORY_LIMIT
QUERY_TEMPSPACE parameters
RESULT_BUFFER
RESULT_BUFFER_FULL_ACTION
VERSIONING
TRANSACTION_ISOLATION_LEVEL
UNIFORM_PROBABILITY_FOR_ADVISOR

No action needed. Current server threads do not
recognize, but new ones will.

TMU_BUFFERS
TMU_OPTIMIZE
AUTOROWGEN
TMU_VERSIONING
TMU_COMMIT_RECORD_INTERVAL
TMU_COMMIT_TIME_INTERVAL

No action needed. Current TMU processes do not
recognize, but new ones will.

FILLFACTOR parameters
INDEX_TEMPSPACE parameters
PASSWORD parameters

No action needed. Current server threads and TMU
processes do not recognize, but new ones will.

ADMIN parameters
REPORT_INTERVAL

Other ADMIN parameters

No action needed. Current threads do not recognize, but
new ones will.

From the Control Panel, stop the warehouse service and
then restart it or use the ALTER SYSTEM statement to
restart logging and admin threads.

Change Action Required

 (2 of 2)
9-48 Informix Red Brick Decision Server Administrator’s Guide

Monitoring and Controlling a Database Server
Tip: In the rbw.config file, parameters preceded by TUNE affect performance. The
parameters preceded by OPTION affect behavior.

For a description and example of the rbw.config file and a table that lists which
parameters can also be set with SQL statements or TMU SET commands, refer
to Appendix B, “Configuration File.”

The RBW_OPTIONS system table lists current values for all parameters that
you can change. It is updated whenever a SET command changes a value
during a session. The values displayed apply to the current session. For more
information, refer to Appendix C, “System Tables and Dynamic Statistic
Tables.”

Monitoring and Controlling a Database Server
Red Brick Decision Server includes tools to help monitor and control the
warehouse daemons and server processes. You can also monitor queries
through the USAGE ROUTINE event in the log file. the following sections
describe these monitoring tools. For a description of other monitoring and
control features, see Chapter 8, “Managing Database Activity in an
Enterprise.”

Monitoring and Controlling a Server on UNIX
The following sections discuss how to monitor and control server daemon
processes, monitor user sessions, and use log files to monitor database
processes.

UNIX
Maintaining a Data Warehouse 9-49

Monitoring and Controlling a Server on UNIX
Daemon Processes

You can use the following scripts to monitor and control the Red Brick
Decision Server daemon processes (rbwapid, rbwlogd, and rbwadmd). The
RB_CONFIG environment variable must be set to point to the directory that
contains the rbw.config file to run these scripts or any user-defined scripts that
call them.

For more information about running these scripts and automatic startup
procedures, refer to the Installation and Configuration Guidee.

If rbwapid, rbwlogd, or rbwadmd goes down while the warehouse daemon is
still running, you can type the name of the daemon on a command line, and
the warehouse daemon will restart it.

To stop the administration daemon, use the ALTER SYSTEM TERMINATE
ADMIN DAEMON statement.

Script Description

 rbw.start Starts rbwapid, rbwlogd, and rbwadmd daemons as background
processes. You must be logged in as the redbrick user to execute
rbw.start. For example:

redbrick_dir/bin/rbw.start config_path RB_HOST

rbw.show Displays information about the active rbwapid, rbwlogd, and rbwadmd
daemons and their associated server processes. For example:

redbrick_dir/bin/rbw.show

rbw.stop Stops rbwapid, rbwlogd, and rbwadmd daemons. You must be logged in
as the redbrick user to execute rbw.stop. For example:

redbrick_dir/bin/rbw.stop RB_HOST
9-50 Informix Red Brick Decision Server Administrator’s Guide

Monitoring and Controlling a Server on UNIX
Findserver Utility

You can use a utility named rbw.findserver (Findserver) to inquire about a
specific user session or all active sessions. For each session it finds, the
Findserver utility lists the following information:

■ User name

■ Database path

■ Server process ID

■ Date and time that a user session started

The rbw.findserver program works in conjunction with a server-monitoring
daemon named rbw.servermon. If the Findserver utility is enabled, the
rbw.servermon daemon is started automatically by the rbw.start script and
runs whenever the rbwapid daemon is running. The monitoring daemon runs
in the background and maintains a private record of information about active
server sessions.

Once started, the rbw.servermon daemon runs as long as the rbwapid daemon
is running. When the rbwapid daemon stops, the rbw.servermon daemon will
stop at the next scheduled maintenance update of the monitor log file, as
determined by the INTERVAL value. You can use the rbw.stop utility to stop
the rbwapid daemon.

Enabling Findserver

To enable server monitoring and the Findserver utility, you must add the
following line to your rbw.config file:

RBWMON INTERVAL n

The RBWMON keyword enables server monitoring. The INTERVAL parameter
specifies the time in seconds (n) between maintenance updates of the monitor
log file. A value of 120 seconds is recommended.

If the RBWMON keyword is not present in the rbw.config file, no server
monitoring is performed, and the rbw.findserver utility does not function. You
must add the RBWMON keyword. It is not added automatically by the instal-
lation script.
Maintaining a Data Warehouse 9-51

Monitoring and Controlling a Server on Windows NT
Using Findserver

The rbw.findserver program must be run as the redbrick user, and the
RB_CONFIG environment variable must be set correctly. The syntax is as
follows:

rbw.findserver [db_username]

If db_username is specified, only session(s) for that user are listed. If
db_username is omitted, all active sessions are listed.

Log Files

Several log files are available in the redbrick directory to allow you to monitor
the various database processes.

For more information on log files, refer to “Event Logging” on page 8-18.

Monitoring and Controlling a Server on Windows NT
The Red Brick Decision Server service is created automatically by the instal-
lation process when server is installed. From then on, you can use the Control
Panel Services icon to start and stop the database service. To stop the admin-
istration thread, use the ALTER SYSTEM TERMINATE ADMIN DAEMON
statement.

Warning: Close the log viewer utility (logdview) before restarting the database
service. If you do not close the log viewer, the log daemon will continue to use the
current active log file, and the per file limit will not be in effect.

File Description

install.log Contains a software identification number and server installation
date

rbwapid.log Records configuration information and starting and stopping of the
various warehouse daemons. This file is limited in size by the
LOGFILE_SIZE parameter in the rbw.config file

rbwacct and
rbwlog

Nontext and binary files located in the redbrick_dir/logs directory that
contain detailed activity and accounting information. These files are
also used by Informix Customer Support.

WIN NT
9-52 Informix Red Brick Decision Server Administrator’s Guide

Enabling Licensed Options
As long as the service is running, all of the threads should be running. If a
thread does go down, restart the service using the Control Panel. If for some
reason, the Red Brick Decision Server service is deleted, you can either run
the installation procedure to create a new service automatically or use the
Registry editor and the rbwservice utility to create a new service manually, as
described in the Installation and Configuration Guide.

You can use the rbwshow.exe script to view the host name, number of active
connections, and number of active databases. Other monitoring and control
features are described in Chapter 8, “Managing Database Activity in an
Enterprise.”

Several log files are available in the redbrick directory to allow you to monitor
theRed Brick Decision Server service and its threads.

For more information on log files, refer to “Event Logging” on page 8-18.

Enabling Licensed Options
Some features of Red Brick Decision Server are options that require a license
key to enable their use. These features are included as part of the Red Brick
Decision Server software. If an option is purchased at the same time as Red
Brick Decision Server, it is installed and enabled during the normal instal-
lation process using the license key provided on a separate information sheet.
If your site purchases one of these options after you have installed the server
software, run the installation script and select the License Option menu. This
enables the option when you provide the license key.

File Description

rbwapid.log Records configuration information and starting and stopping of
the service and its threads. This file is limited in size by the
LOGFILE_SIZE parameter in the rbw.config file.

rbwacct and
rbwlog

Contain detailed activity and accounting information. These files
are located in the redbrick_dir\logs directory. They are also used by
Informix Customer Support. The rbwlog files can be read with the
logdview utility.

rbwexcept.log Records any software exceptions. This file is used for debugging
purposes only.
Maintaining a Data Warehouse 9-53

Determining Version Information
If you have purchased the option but do not have a license key, contact
Informix Customer Support for this information. For contact information,
refer to “Customer Support” on page 12 of the Introduction.

Determining Version Information
If you need to contact the Informix Customer Support, determine the
complete version identification information for the Red Brick Decision Server
software before you call.

You can obtain server version information as follows:

■ By viewing the rbwapid.log file. The version is at the beginning of the
configuration information that follows the startup times.

■ From the copyright banners displayed when a RISQL Entry Tool or
RISQL Reporter session is started.

■ By entering the following SQL statement from any tool that allows
direct entry of SQL:

select rbw_version from rbw_tables ;

A similar query can be run on any table. It returns the version
number, with one line for each row in the table, so choose a table with
a small number of rows.

Deleting Database Objects and Databases
As users requirements evolve, you might need to remove tables from an
existing database or delete an entire database from a Red Brick Decision
Server installation. This section contains the following information:

■ Dropping database objects (tables, indexes, views, synonyms,
segments, macros, and roles) from a database with DROP statements

■ Deleting a database

Tip: To remove a user from a database, execute a REVOKE CONNECT statement.
9-54 Informix Red Brick Decision Server Administrator’s Guide

Dropping Database Objects
Dropping Database Objects
To drop objects from a database, use the appropriate SQL DROP statement:

■ DROP INDEX

■ DROP MACRO

■ DROP ROLE (applicable only with role-based security)

■ DROP SEGMENT

■ DROP SYNONYM

■ DROP TABLE

■ DROP VIEW

If the object you are dropping is referenced by another object, you must drop
the referencing object first. For example, you must drop a view before you
can drop the table referenced by the view. Similarly, if a fact table references
a dimension table through a foreign key reference, you must drop the fact
table before you can drop the dimension table.

If you are going to drop a table, you do not need to drop its columns or
indexes first. Columns are dropped from a table with the ALTER TABLE
statement.

For complete syntax descriptions, refer to the SQL Reference Guide.

Indexes

An index is dropped from the database with the DROP INDEX statement.

You can specify whether to keep or drop any user-defined segments
associated with the index. If the segments are kept, they are detached from
the table associated with the index and are available for reuse. If the segments
are dropped, all PSUs in the segments are also removed. The default behavior
is to keep user-defined segments. You can override the default behavior
globally by setting the SEGMENTS parameter in the rbw.config file or locally
for a given index in the DROP INDEX statement.

Default segments are always dropped when the index is dropped.
Maintaining a Data Warehouse 9-55

Dropping Database Objects
Macros

A macro is dropped with the DROP MACRO statement. A temporary macro is
also dropped when the database connection or server session is terminated.
After a macro is dropped, references to it are no longer expanded.

The use of the PUBLIC and TEMPORARY keywords in a DROP MACRO
statement must be the same as in the CREATE MACRO statement.

Roles

The predefined system roles, DBA, RESOURCE, and CONNECT, cannot be
dropped. You can only revoke the role from specific users.

You can define custom, or user-defined, roles in addition to the predefined
system roles. A user-defined role is dropped with the DROP ROLE statement.
Dropping a role removes the role name and effectively revokes all task autho-
rizations, object privileges, database users, and roles that have been granted
to the role. Members of the role no longer have the tasks or privileges of the
role, but they might have the same tasks or privileges directly or through a
different role.

Segments

A segment is dropped from the database with the DROP SEGMENT statement.
A segment must be taken offline (with the ALTER SEGMENT statement) and
detached before you can drop it with a DROP SEGMENT statement.

Segments can be dropped automatically when the owning table or index is
dropped in either of the following ways:

■ By setting the SEGMENTS parameter to DROP, either as an option in
the rbw.config file or with a SET command from the command line.
For more information about setting the SEGMENTS parameter, refer
to “Setting Segment and Partial Availability Behavior” on
page 10-22.

■ For a specific table or index, by including the DROPPING SEGMENTS
clause in a DROP INDEX or DROP TABLE statement.

When a segment is dropped, all PSUs in the segments are also removed.
9-56 Informix Red Brick Decision Server Administrator’s Guide

Dropping Database Objects
Synonyms

A synonym is dropped with the DROP SYNONYM statement. This statement
has no effect on the base table.

You can drop a synonym when it is no longer needed. Before dropping a
synonym, you must drop any tables or views that reference the synonym or
alter those tables or views so that they do not reference the synonym.

Tables

A table is dropped from the database with the DROP TABLE statement. This
statement also drops any indexes on the table and removes any privileges or
synonyms that reference the table. This statement can be used only for base
tables, not for views or synonyms.

You can specify whether to keep or drop any user-defined segments
associated with the table. If the segments are kept, they are detached from the
table and are available for reuse. If the segments are dropped, all PSUs in the
segments are also removed. The default behavior is to keep user-defined
segments. You can override the default behavior globally by setting the
SEGMENTS parameter in the rbw.config file or locally for a given table in the
DROP TABLE statement.

Unlike user-defined segments, default segments are always dropped when
the table is dropped.

Tip: If the table to be dropped contains one or more damaged segments (as indicated
in the RBW_SEGMENTS system table), a DROP TABLE…KEEPING SEGMENTS
statement will fail. You must first detach and drop the damaged segments before you
can drop the table. However, a DROP TABLE…DROPPING SEGMENTS statement
will succeed even when the table contains damaged segments.

Before dropping a table, you must drop any other tables or views that
reference the table or any synonyms defined on that table.

Views

To drop a view from the database, use the DROP VIEW statement. Dropping
a view does not affect underlying tables.

Before you drop a view, you must drop any views that reference it.
Maintaining a Data Warehouse 9-57

Deleting a Database
Deleting a Database
To delete a database, use the utility rb_deleter on UNIX or dbcreate on
Windows NT. This utility removes any default files created by a server in the
database directory. This utility is typically executed only by the database
administrator and can be executed only as the redbrick user.

Any files in the database directory that do not have a default name (that is,
any user-specified files) and any directories or segment files that are not in
the main database directory are not removed automatically by the utility.
Instead, you must remove them manually with operating-system
commands.

You do not need to drop tables or other objects within the database before
deleting the database. However, if the database contains segments that reside
outside the database directory, you can use the DROP TABLE statement with
the DROPPING SEGMENTS option to automatically remove any associated
PSUs, thereby eliminating the need to remove them manually with the rm
command on UNIX or del command on Windows NT.

To delete a database on UNIX

1. Access the database with DBA authority. Perform one or both of the
following steps:

■ Use DROP TABLE…DROPPING SEGMENTS for tables with PSUs
outside the database directory.

■ Check the RBW_STORAGE system table for any PSUs (files) not
located in the database directory or the
DEFAULT_DATA_SEGMENT and DEFAULT_INDEX_SEGMENT
directories. Record their names for use in step 4.

Exit from the database.

2. Log in as the redbrick user.

3. Invoke rb_deleter, which is located in the $RB_CONFIG/bin directory.
Enter the following command at the system prompt:

$ rb_deleter pathname

In the example, pathname is a full directory path specification to the
database directory, such as /disk1/db_sales_92.

UNIX
9-58 Informix Red Brick Decision Server Administrator’s Guide

Deleting a Database
4. Use operating-system commands (rm, rmdir) to remove:

■ Any files or directories remaining in the database directory and
then remove the directory.

■ Any segment directories and PSUs (files) that were not in the
main database directory. (See step 1.) Check for directories refer-
enced by CREATE SEGMENT statements and for directories
named by DEFAULT_DATA_SEGMENT and
DEFAULT_INDEX_SEGMENT in the rbw.config file.

■ Any spill files that were not cleaned up by the processes that
created them. These files might exist in directories defined by the
QUERY or INDEX TEMPSPACE DIRECTORY settings in the
rbw.config file or specified interactively from the command line.

5. Remove obsolete logical database name definitions from the
rbw.config file.

6. Log out as the redbrick user. ♦

To delete a database on Windows NT

1. Access the database with DBA authority. Perform one or both of the
following steps:

■ Use DROP TABLE…DROPPING SEGMENTS for tables with PSUs
outside the database directory.

■ Check the RBW_STORAGE system table for any PSUs (files) not
located in the database directory or the
DEFAULT_DATA_SEGMENT and DEFAULT_INDEX_SEGMENT
directories. Record their names for use in step 4.

Exit from the database.

WIN NT
Maintaining a Data Warehouse 9-59

Deleting a Database
2. To delete the database, use the dbcreate utility and the following
syntax:

dbcreate -delete { [-d dirname] | [-l logical_dbname]}
[-q]

For example, from the system prompt:
c:\redbrick_dir\util\service: dbcreate -delete -l
aroma

3. Use operating-system commands (del, erase, rmdir) to remove:

■ Any files or directories remaining in the database directory and
then remove the directory.

■ Any segment directories and PSUs (files) that were not in the
main database directory. (See step 1.) Check for directories refer-
enced by CREATE SEGMENT statements and for directories
named by DEFAULT_DATA_SEGMENT and
DEFAULT_INDEX_SEGMENT in the rbw.config file.

■ Any spill files that were not cleaned up by the processes that
created them. These files might exist in directories defined by the
QUERY or INDEX TEMPSPACE DIRECTORY settings in the
rbw.config file or specified interactively from the command line.

4. Remove obsolete logical database name definitions from the
rbw.config file. ♦

-d dirname Full pathname of the directory containing
the database to be deleted.

 -l logical_dbname Logical name of the database to be deleted,
as defined in the rbw.config file.

-q Quiet mode, which does not ask you to
confirm the deletion of each file.
9-60 Informix Red Brick Decision Server Administrator’s Guide

10
Chapter
Tuning a Warehouse for
Performance
In This Chapter . 10-5

Specifying Parameters with rbw.config File Entries or
SET Commands 10-6

Setting Temporary Space Parameters. 10-7
Temporary Space Parameters 10-7
How Temporary Space Is Allocated 10-9

Random Directory Sequence 10-9
File Creation and Use 10-11
Full and Out-of-Space Conditions 10-11

TEMPSPACE 10-12
Determining Current Values 10-17
Removing Temporary Files. 10-17
Setting QUERY_MEMORY_LIMIT 10-18

Setting the Result Buffer for Long-Running Queries 10-19
RESULT BUFFER Parameter 10-20
RESULT BUFFER FULL ACTION Parameter 10-21

Setting Segment and Partial Availability Behavior 10-22
Location of Default Segments 10-22
Segment Drop Behavior 10-23
Query Behavior on Partially Available Tables 10-25
Use of Partially Available Indexes 10-27

Setting the VARCHAR Column Fill Factor 10-28
How the Server Uses the VARCHAR Fill Factor 10-28
Effect of Fill Factor on Performance 10-29

10-2 Inf
Monitoring Accuracy of the VARCHAR Fill Factor 10-34
Using CHECK TABLE with the VERBOSE Option 10-34
Obtaining Current Fill Factor Value 10-36

Modifying the VARCHAR Fill Factor 10-36

Setting the Index Fill Factor 10-37
Finding the Fill Factor Used for a Specific Index 10-40
Deciding Whether to Change Default Fill Factors 10-40
Changing an Index Fill Factor 10-41

Creating Additional Indexes. 10-42

Understanding Query Processing 10-43
Join Algorithms 10-43
Operator Model. 10-46

Advisor . 10-46
B-TREE 1-1 Match 10-46
B-TREE Scan 10-47
Bit Vector Sort 10-48
Check . 10-48
Choose Plan. 10-48
Delete . 10-48
Delete Cascade. 10-49
Delete Refcheck 10-49
Exchange. 10-50
Execute . 10-50
Functional Join. 10-50
General Purpose 10-51
Hash 1-1 Match 10-51
Hash AVL Aggregate 10-51
Insert . 10-52
Merge Sort 10-52
Naive 1-1 Match 10-52
RISQL Calculate 10-52
Simple Merge 10-52
Sort 1-1 Match 10-53
STARjoin . 10-53
Subquery. 10-53
Table Scan 10-54
TARGETjoin 10-54
TARGET Scan 10-54
ormix Red Brick Decision Server Administrator’s Guide

Update . 10-55
Virtual Table Scan 10-55

EXPLAIN Statement 10-55

TARGETjoin Query Processing 10-59
How to Use TARGETjoin Processing 10-59

Create TARGET or B-TREE Indexes on Foreign Keys
of Fact Table 10-59

Rules for TARGETjoin Query Processing 10-60
Turning Off TARGETjoin Query Processing 10-61

When to Use TARGETjoin Processing. 10-62
Evaluate Query Performance 10-62
Schema Types 10-63
Many STAR Indexes Versus TARGETjoin

Processing 10-64
Examples . 10-64

Query That Chooses TARGETjoin. 10-65
Reading EXPLAIN Output for a TARGETjoin Query 10-67

STAR and TARGET Plan 10-67
TARGET Only Plan. 10-69

Summary and Recommendations 10-72
Indexes to Create 10-73
Large Dimension Table 10-74
Experiment 10-74

Using Synonyms to Control Fact-to-Fact Joins 10-75

Making SQL-Based Improvements 10-78
UNION Versus Interdimensional ORs 10-78
Subquery in the FROM Clause Versus Correlated

Subquery 10-78
Tuning a Warehouse for Performance 10-3

10-4 Inf
ormix Red Brick Decision Server Administrator’s Guide

In This Chapter
This chapter describes ways in which you can customize Red Brick Decision
Server to improve performance at your site. Because customizing is site
specific, only general guidelines are provided in most cases. Informix
suggests that you use Red Brick Decision Server initially in its default config-
uration. As you gain experience with the server software, the system
environment, and the workload at your site, you might find areas in which
you want to improve performance.

This chapter includes the following sections:

■ Specifying Parameters with
rbw.config File Entries or SET Commands

■ Setting Temporary Space Parameters

■ Setting the Result Buffer for Long-Running Queries

■ Setting Segment and Partial Availability Behavior

■ Setting the VARCHAR Column Fill Factor

■ Setting the Index Fill Factor

■ Creating Additional Indexes

■ Understanding Query Processing

■ TARGETjoin Query Processing

■ Using Synonyms to Control Fact-to-Fact Joins

■ Making SQL-Based Improvements
Tuning a Warehouse for Performance 10-5

Specifying Parameters with rbw.config File Entries or SET Commands
To turn on statistics reporting, which provides some information useful in
analyzing query performance, use the SET STATS command.

For information about improving query performance through parallel
processing, refer to Chapter 11, “Tuning a Warehouse for Parallel Query
Processing.” For information about monitoring controlling, and tracking
resource use of the server, refer to Chapter 8, “Managing Database Activity
in an Enterprise.” To customize the server environment for your site and user
community, refer to your operating-system documentation.

Specifying Parameters with
rbw.config File Entries or SET Commands
Many parameters can be set either in the rbw.config file or with SET
commands. Entries in the rbw.config file affect all sessions for that server. SET
commands affect only the session during which they are executed. Most SET
commands can be entered interactively anywhere you can enter SQL state-
ments, or they can be entered in the warehouse, database, or user .rbwrc files.
SET commands for the TMU can be entered in the TMU control file for the
target activity.

The values in the rbw.config file are processed before any .rbwrc files are read
or before the TMU runs, so the rbw.config file settings can be overridden by
.rbwrc file settings or by TMU control files.

The RBW_OPTIONS system table lists all tunable parameters and their current
values. The table is updated whenever a SET command changes a value
during a user session.

Tip: The syntax diagrams for SET commands in this chapter include the terminating
semicolon (;) required by the TMU, the RISQL Entry Tool, and the RISQL Reporter.
Not all SQL entry tools require this terminator.
10-6 Informix Red Brick Decision Server Administrator’s Guide

Setting Temporary Space Parameters
Setting Temporary Space Parameters
Index-building operations and complex queries can require large amounts of
temporary space to store intermediate results. With the temporary space
parameters, you can define the directories to be used when temporary space
is needed, the threshold at which intermediate results spill from memory to
disk, and the maximum amount of disk space to be used for temporary space.
Separate parameters control index-building operations and query
operations.

This section describes the following:

■ Parameters used to control temporary space

■ Procedure by which temporary space is allocated

■ Syntax for temporary space parameters

■ Procedure to determine the current values of these parameters

■ Removal of temporary files

For information about how to estimate temporary space requirements, refer
to “Estimating Temporary Space Requirements” on page 4-35.

Temporary Space Parameters
The following parameters and corresponding SET commands control the
location and use of temporary space.

Figure 10-1
For Index Building Temporary Space

TUNE Parameter and SET Command Function

TUNE INDEX_TEMPSPACE_DIRECTORY,
SET INDEX TEMPSPACE DIRECTORIES*

Specifies temporary space directory or directories to be
used by index-building operations. Multiple rbw.config
file entries can be made, one directory per entry. *

TUNE INDEX_TEMPSPACE_THRESHOLD,
SET INDEX TEMPSPACE THRESHOLD

Specifies size at which index-building operations spill
from memory to disk.

 (1 of 2)
Tuning a Warehouse for Performance 10-7

Temporary Space Parameters
The QUERY_TEMPSPACE parameters are used whenever queries are
processed. They are not used for TMU operations. The INDEX_TEMPSPACE
parameters are used whenever indexes are built or modified by CREATE
INDEX statements or TMU LOAD DATA or REORG operations.

You can specify values for these parameters in the rbw.config file or with SET
commands, which you can enter in .rbwrc files or anywhere you can enter
SQL statements. You can also specify INDEX_TEMPSPACE parameters for TMU
operations with SET commands in a TMU control file.

TUNE INDEX_TEMPSPACE_MAXSPILLSIZE,
SET INDEX TEMPSPACE MAXSPILLSIZE

Specifies maximum amount of temporary space that can
be allocated to a spill during an index-building
operation.

TUNE QUERY_TEMPSPACE_DIRECTORY,
SET QUERY TEMPSPACE DIRECTORIES

Specifies temporary space directory or directories to be
used by query processing. Multiple rbw.config file
entries can be made, one directory per entry. *

TUNE QUERY_MEMORY_LIMIT,
SET QUERY MEMORY LIMIT

Specifies the maximum memory size for queries, after
which they spill from memory to disk.

TUNE QUERY_TEMPSPACE_MAXSPILLSIZE,
SET QUERY TEMPSPACE MAXSPILLSIZE

Specifies maximum amount of temporary space that can
be allocated to service a spill during a query operation.

* Red Brick Decision Server and the TMU automatically spread temporary space usage evenly across
the designated directories.

TUNE Parameter and SET Command Function

 (2 of 2)
10-8 Informix Red Brick Decision Server Administrator’s Guide

How Temporary Space Is Allocated
How Temporary Space Is Allocated
The set of directories comprising each temporary space can be thought of as
a circular buffer, and the set of files created in each directory for a particular
query or index-building process can be thought of as a slice of the buffer, a
slice that can grow to but not exceed MAXSPILLSIZE.

Random Directory Sequence

When a process exceeds the threshold size and spills to disk, a random
sequence of these temporary space directories is determined for that process.
This sequence determines the order in which the directories are used by that
process. For example, if five temporary space directories—d1, d2, d3, d4, d5—
are defined, a sequence for one spill operation might be d3, d1, d4, d2, d5,
while the sequence for another concurrent spill operation might be d1, d2, d5,
d3, d4.

The following figure illustrates this concept of the temporary space direc-
tories comprising a circular buffer, one for queries and one for index-building
operations. Two slices based on random directory sequences are shown for
each buffer.
Tuning a Warehouse for Performance 10-9

How Temporary Space Is Allocated
Figure 10-2
Random Directory Sequence

…

…

QUERY_TEMPSPACE

Random sequences with five directories
Query 1: 3, 1, 4, 2, 5, 3 …
Query 2: 1, 2, 5, 3, 4, 1 …

Query 1 slice Query 2 slice

INDEX_TEMPSPACE

Random sequences with four directories
Index operation 1: 2, 1, 4, 3
Index operation 2: 4, 3, 1, 2

Operation 1 slice Operation 2 slice

QD5

QD4

QD2

QD3

QD1

QD1

QD2

QD3

QD4

QD5

ID1

ID2

ID4

ID3

ID1

ID2

ID3

ID4
10-10 Informix Red Brick Decision Server Administrator’s Guide

How Temporary Space Is Allocated
File Creation and Use

For each temporary space slice, one or more files are created in each directory.
The first file in the first directory is initialized to 16 kilobytes. If a
MAXSPILLSIZE value of less than 8 kilobytes is specified, the first file is
initialized to only 8 kilobytes. The remaining files in the slice are initialized
with a size of 0.

For both query and index-building spills, the directories are used in the
random sequence determined for each spill. However, in directories
containing multiple files, the files are used in the following sequences:

■ For query temporary directories

The files are used one per directory in the random sequence, thus
distributing the load among the directories, repeating the sequence
as needed.

■ For index-building directories

All files in a directory are used, before proceeding to the next
directory in the random sequence.

Full and Out-of-Space Conditions

A slice of query or index temporary space is full when either of the following
conditions is met:

■ The sum of the current sizes of all files that comprise that slice equals
the MAXSPILLSIZE value for that space.

■ The slice cannot be further extended (by extending a file) without
exceeding the MAXSPILLSIZE value for that space.

A slice of query or index temporary space is out of space when the slice is not
yet full, but all files that comprise that slice are in use, and no more disk space
is available to extend the last file in the sequence of files.
Tuning a Warehouse for Performance 10-11

TEMPSPACE
Full and out-of-space conditions affect the various operations as follows:

■ Queries

If a slice of query temporary space becomes full or runs out of space,
the query is aborted.

■ Indexes:

❑ If a slice of index temporary space—online or offline—runs out of
space, the operation is aborted.

❑ If a slice of online index temporary space becomes full, the
contents are merged into the index, the temporary space is
emptied, and the index build continues, reusing the space.

❑ If a slice of offline index temporary space becomes full, the
operation is aborted.

TEMPSPACE
To specify parameters that apply to all sessions, enter a line in the rbw.config
file, using the following syntax.

TUNE dir_path

value

QUERY_TEMPSPACE_DIRECTORY

QUERY_MEMORY_LIMIT

QUERY_TEMPSPACE_MAXSPILLSIZE size

dir_path

value

INDEX_TEMPSPACE_DIRECTORY

INDEX_TEMPSPACE_THRESHOLD

INDEX_TEMPSPACE_MAXSPILLSIZE size
10-12 Informix Red Brick Decision Server Administrator’s Guide

TEMPSPACE
To specify the parameters for specific sessions, enter a SET command using
the following syntax.

RESET

QUERY DIRECTORIES

MAXSPILLSIZE

SET ’dir_path’

,

size

;TEMPSPACE

SET ;TEMPSPACE RESET

RESET

INDEX DIRECTORIES

THRESHOLD

MAXSPILLSIZE

SET ’dir_path’

,

value

size

;TEMPSPACE

SET ;QUERY LIMITMEMORY value

DEFAULT

INDEX

QUERY

DIRECTORY ’dir_path’,
DIRECTORIES ’dir_path’, …

Specifies a directory or a set of directories that
are to be used for temporary files. The dir_path
variable must be a full pathname. To define a set
of directories using entries in the rbw.config file,
enter multiple lines. The order in which the
directories are specified has no effect because
they are used in random order (determined
internally), and no user control is possible.

On UNIX, if no temporary space directories are
defined, the default directory is /tmp. On
Windows NT, if no temporary-space directories
are defined, the default directory is %TEMP%, or
if not set, c:\tmp.
Tuning a Warehouse for Performance 10-13

TEMPSPACE
THRESHOLD value Specifies the amount of memory used before
writing the intermediate results from an index-
building operation to disk.

For index-building operations involving
multiple indexes, this threshold value is
allocated equally among the indexes being
built.

The size must be specified as either kilobytes (K)
or megabytes (M) by appending K or M to the
number. No space is allowed between the
number and the unit identifier (K, M). For
example: 1024K, 500M.

The threshold value must be specified before the
corresponding MAXSPILLSIZE value is
specified. It must precede the MAXSPILLSIZE
entry in the rbw.config file.

A value of 0 causes files to be written to disk
after the first 200 rows or index entries. You
must specify the units. For example: 0K, 0M.

For INDEX_TEMPSPACE_THRESHOLD, the
default value is 10 megabytes (10M).

MAXSPILLSIZE size Specifies the total maximum amount of
temporary space per operation. For an index-
building operation involving multiple indexes,
this space is allocated equally among the
indexes being built. For query operations,
however, the entire value is allocated to each
query and to each of its subqueries, if any.

The size must be specified as kilobytes (K),
megabytes (M), or gigabytes (G) by appending
K, M, or G to the number. No space is allowed
between the number and the unit identifier (K,
M, G). For example: 1024K, 500M, 8G.
10-14 Informix Red Brick Decision Server Administrator’s Guide

TEMPSPACE
Usage

In addition, use the following guidelines when setting temporary space
parameters:

■ Always set the QUERY_MEMORY_LIMIT value before setting the
QUERY_TEMPSPACE_MAXSPILLSIZE value.

■ Never set the QUERY_MEMORY_LIMIT to a value larger than the
maximum data segment size allocated to a process by the operating
system or larger than the QUERY_TEMPSPACE_MAXSPILLSIZE value.

■ In general, smaller QUERY_MEMORY_LIMIT values are better in
multiuser environments. A value that is too large can cause excessive
paging or higher physical memory usage.

■ Use tools or commands to monitor memory usage; for example,
vmstat and sar on UNIX or Performance Monitor (PerfMon) or pstat,
and pview on Windows NT.

For additional information about how queries use temporary space, refer to
“Setting QUERY_MEMORY_LIMIT” on page 10-18.

The default MAXSPILLSIZE value is 1 gigabyte.
The maximum MAXSPILLSIZE value is 2047
gigabytes.

RESET Resets the query or index TEMPSPACE param-
eters to the values specified in the rbw.config file.
If neither QUERY nor INDEX is specified, all
TEMPSPACE parameters are reset.

QUERY MEMORY LIMIT
value

The QUERY MEMORY LIMIT value must be
specified as kilobytes (K), megabytes (M), or
gigabytes (G) by appending K, M, or G to the
number. No space is allowed between the
number and the unit identifier (K, M, or G). For
example: 2048K, 500M, 3G.

The default value of QUERY MEMORY LIMIT is
50 megabytes (50M). The range is from 2
megabytes (2M) to 4 gigabytes (4G).
Tuning a Warehouse for Performance 10-15

TEMPSPACE
Examples

The following example illustrates entries in the rbw.config file that apply to all
sessions:

TUNE QUERY_TEMPSPACE_DIRECTORY /disk1/qtemp
TUNE QUERY_TEMPSPACE_DIRECTORY /disk2/qtemp
TUNE QUERY_TEMPSPACE_DIRECTORY /disk3/qtemp
TUNE QUERY_MEMORY_LIMIT 2M
TUNE QUERY_TEMPSPACE_MAXSPILLSIZE 8G

The following example illustrates SET commands that can be used to change
parameters for a specific session:

SET INDEX TEMPSPACE DIRECTORIES ’/disk1/itemp’,
’/disk2/itemp’, ’/disk3/itemp’

SET INDEX TEMPSPACE THRESHOLD 2M
SET INDEX TEMPSPACE MAXSPILLSIZE 3G

♦

The following example illustrates entries in the rbw.config file that apply to all
sessions:

TUNE QUERY_TEMPSPACE_DIRECTORY d:\qtemp
TUNE QUERY_TEMPSPACE_DIRECTORY e:\qtemp
TUNE QUERY_TEMPSPACE_DIRECTORY f:\qtemp
TUNE QUERY_TMEMORY_LIMIT 2M
TUNE QUERY_TEMPSPACE_MAXSPILLSIZE 8G

The following example illustrates SET commands that can be used to change
parameters for a specific session:

SET INDEX TEMPSPACE DIRECTORIES ’d:\itemp’,
’e:\itemp’, ’f:\itemp’

SET INDEX TEMPSPACE THRESHOLD 2M
SET INDEX TEMSPACE MAXSPILLSIZE 3G

♦

The following example illustrates how to reset the INDEX_TEMPSPACE
parameters to the values specified in the rbw.config file, leaving the
QUERY_TEMPSPACE parameters set to their current values:

SET INDEX TEMPSPACE RESET

The following example illustrates how to reset all TEMPSPACE parameters to
the values specified in the rbw.config file:

SET TEMPSPACE RESET

UNIX

WIN NT
10-16 Informix Red Brick Decision Server Administrator’s Guide

Determining Current Values
Determining Current Values
To determine the current values for the QUERY_TEMPSPACE and
INDEX_TEMPSPACE parameters, query the RBW_OPTIONS system table.

Example

To determine the QUERY_TEMPSPACE parameters in effect for the current
session, enter a query similar to the following:

select substr(option_name, 1, 30), substr(value, 1, 40)
from rbw_options
where username = CURRENT_USER

and option_name like ’QUERY?_%’ escape ’?’;

Removing Temporary Files
Spill files are usually removed by the server (rbwsvr) or the TMU as soon as
possible. However, if the server or TMU terminates abnormally, it might not
be able to remove all spill files before it terminates. To remove any of these
old spill files, upon initialization the warehouse daemon (rbwapid) on UNIX
or the Red Brick Decision Server service on Windows NT executes a cleanup
script specified by the following entry in the rbw.config file:

RBWAPI CLEANUP_SCRIPT script_name

where script_name is the name of the cleanup script for your system.

The default cleanup script, which is redbrick_dir/bin/rb_sample.cleanup on
UNIX and redbrick_dir\bin\rbclean.bat on Windows NT, removes all files from
the QUERY_TEMPSPACE and INDEX_TEMPSPACE directories specified in the
rbw.config file. If no directories are specified in the file, the script looks for spill
files in the tmp directory and removes them. The cleanup script does not find
and remove spill files from locations specified with a SET command during a
server or TMU session. These files must be removed manually.
Tuning a Warehouse for Performance 10-17

Setting QUERY_MEMORY_LIMIT
Setting QUERY_MEMORY_LIMIT
When setting the QUERY_MEMORY_LIMIT parameter, consider the following:

■ Be aware of the amount of physical memory available on your
system.

■ Do not consistently overcommit memory.

■ Know the number of users on the system and the number of users
who will be issuing queries during the same time period.

■ Keep the paging rate down.

Red Brick Decision Server allocates memory to each query. The size of the
memory allocation is allowed to grow from 1 megabyte, which is the default
size to which the buffer cache is initialized, to the value specified by the
QUERY_MEMORY_LIMIT parameter, after which it spills to disk. The value of
the QUERY_MEMORY_LIMIT parameter applies to all users on the system.
Therefore, if QUERY_MEMORY_LIMIT is set to 10 megabytes and you have 10
users on your system, the minimum amount of memory used for query
processing is 10 times 1 megabyte, or 10 megabyte, and the potential amount
of memory that can be used for query processing is 10 times 10 megabytes, or
100 megabytes. Each user’s memory consumption grows above 1 megabyte
only when a query is issued that requires more than 1 megabyte of memory.

If Red Brick Decision Server runs out of query-processing memory before
each user reaches the value specified in the QUERY_MEMORY_LIMIT
parameter, the operating system starts swapping memory to disk. Avoid this
condition because it slows performance. When you set the parameter
QUERY_MEMORY_LIMIT, choose a value high enough that most queries can
run in memory but not so high that the operating system has to swap to disk.

Consider trade-offs, however. For example, setting the parameter
QUERY_MEMORY_LIMIT to a higher value might avoid spilling to disk in 90
percent of your queries, thus making those queries run many times faster. But
the remaining 10 percent might be large queries run simultaneously by
several users, potentially overcommitting memory resources, forcing the
operating system to swap to disk and ultimately slowing everyone down.
Consider the trade-offs and set the QUERY_MEMORY_LIMIT value
accordingly.
10-18 Informix Red Brick Decision Server Administrator’s Guide

Setting the Result Buffer for Long-Running Queries
The amount of memory used also depends on the number of concurrent
users executing queries. Consider this additional factor when you set the
value for QUERY_MEMORY_LIMIT. The types of queries that are being
executed is also a factor. Queries that browse a small dimension table tend to
use small amounts of memory, and queries that join two fact tables tend to
use large amounts of memory. It is sometimes difficult to predict what the
users will do, but you can find trends by monitoring the database activity.

Setting the Result Buffer for Long-Running Queries
The result buffer is an area of temporary space that is used to hold query
results that have completed processing on the server but are waiting for the
client to request them. This is necessary because some client tools require
user input to retrieve more than a certain amount of data. While a query is
processing, a read lock is placed on each of the tables involved in the query.
If you have long-running queries, the read locks prevent other users from
performing INSERT, UPDATE, DELETE, or LOAD operations on these tables for
the duration of the query.

For a large result set, the read lock(s) on the table(s) remain until all of the
results either leave Red Brick Decision Server or are placed in the buffer. With
client tools that require user input to receive more than a certain amount of
data, the read locks remain on the tables until all of the results are either
delivered to the client or are placed in the buffer to wait for the client.

Two SQL SET statements and two corresponding rbw.config TUNE parameters
control the behavior of the result buffer:

■ SET RESULT BUFFER

■ SET RESULT BUFFER FULL ACTION

■ TUNE RESULT_BUFFER

■ TUNE RESULT_BUFFER_FULL_ACTION
Tuning a Warehouse for Performance 10-19

RESULT BUFFER Parameter
RESULT BUFFER Parameter
To specify the size of the buffer that holds query results until the client is
ready to receive them, enter an SQL SET statement with the following syntax.

The corresponding rbw.config file syntax is as follows.

SET valueRESULT BUFFER ;K

UNLIMITED

G

M

valueRESULT_BUFFER K

UNLIMITED

G

M

TUNE

value Specifies an integer value, which must be followed by
K (kilobytes), M (megabytes), or G (gigabytes).

UNLIMITED Indicates that there is no limit on the amount buffered. The
buffer uses the same space allocated with the QUERY
TEMPSPACE MAXSPILLSIZE parameter, so when the RESULT
BUFFER parameter is set to unlimited, the buffer size is still
limited by the QUERY TEMPSPACE MAXSPILLSIZE value.

Setting a value of 0 for the RESULT BUFFER parameter
specifies that no results will be buffered.
10-20 Informix Red Brick Decision Server Administrator’s Guide

RESULT BUFFER FULL ACTION Parameter
RESULT BUFFER FULL ACTION Parameter
To specify the behavior when the results buffer size specified with the SET
RESULT BUFFER command is reached, enter a SET statement with the
following syntax.

The corresponding rbw.config file syntax is as follows.

The value ABORT indicates that the query will abort when the buffer size is
reached. The value PAUSE indicates that when the buffer size is reached the
query will pause until the client requests more data.

Example

The following SET commands specify a result buffer of 100 megabytes for the
current session and force the query to abort when that buffer size is reached:

set result buffer 100M;
set result buffer full action abort;

SET RESULT BUFFER FULL ACTION ;ABORT

PAUSE

TUNE RESULT_BUFFER_FULL_ACTION ABORT

PAUSE
Tuning a Warehouse for Performance 10-21

Setting Segment and Partial Availability Behavior
Setting Segment and Partial Availability Behavior
Segment creation and deletion behavior, as well as query behavior against
partially available tables, are determined on a global basis by option settings
in the rbw.config file. These option settings can be overridden for the current
session by SET commands entered on the command line.

Location of Default Segments
You can specify a directory location for all default row data segments and
another for all default index segments (that is, those segments not specifically
created with a CREATE SEGMENT statement).

Syntax

To set a default directory for default data or index segments for all sessions,
enter a line in the rbw.config file using the following syntax.

To set a default directory for default data or index segments for specific
sessions, enter a SET command using the following syntax.

OPTION dir_path

DEFAULT_INDEX_SEGMENT

DEFAULT_DATA_SEGMENT

’dir_path ’ ;SET DEFAULT

INDEX

DATA SEGMENT STORAGE PATH

dir_path Pathname of the directory in which all default row data segments
or all default index segments are to be stored.

If no default directory is specified, all default segments are stored
in the database directory, as defined in the rbw.config file or with
the RB_PATH environment variable.
10-22 Informix Red Brick Decision Server Administrator’s Guide

Segment Drop Behavior
Examples

The following examples illustrate how to specify a default location for
default data and index segments.

With rbw.config file entries:

OPTION DEFAULT_DATA_SEGMENT /dsk1/dsegs
OPTION DEFAULT_INDEX_SEGMENT /dsk1/ixsegs

With SET commands:

set default data segment storage path ’dsk1/dsegs’;
set default index segment storage path ’dsk1/ixsegs’;

♦

With rbw.config file entries:

OPTION DEFAULT_DATA_SEGMENT c:\dsk1\dsegs
OPTION DEFAULT_INDEX_SEGMENT c:\dsk1\ixsegs

With SET commands:

set default data segment storage path ’c:\dsk1\dsegs’;
set default index segment storage path ’c:\dsk1\ixsegs’;

♦

Segment Drop Behavior
You can specify whether a user-defined segment should be dropped or kept
if the table or index in that segment is dropped. (Default segments are always
dropped.)

Syntax
To specify segment drop behavior for user-defined segments for all sessions,
enter a line in the rbw.config file using the following syntax.

UNIX

WIN NT

OPTION KEEPSEGMENTS

DROP
Tuning a Warehouse for Performance 10-23

Syntax
To specify segment- drop behavior for user-defined segments for specific
sessions, enter a SET command using the following syntax.

Tip: If the table to be dropped contains any damaged segments—default or user-
defined—and the segment-drop behavior is KEEP, the table cannot be dropped until
the damaged segment(s) is detached and dropped.

Examples

Specify drop behavior for user-defined segments for all sessions with an
rbw.config file entry, as the following example illustrates:

OPTION SEGMENTS DROP

Specify drop behavior for user-defined segments for a specific session with a
SET command, as the following example illustrates:

set segments drop;

SET KEEPSEGMENTS

DROP

;

KEEP Specifies the segment is to be kept for reuse even though the table
or index it contains is dropped. The segment can be reused for
another table or index. The default behavior is KEEP for user-
defined segments.

DROP Specifies the segment is to be dropped if the table or index it
contains is dropped.
10-24 Informix Red Brick Decision Server Administrator’s Guide

Query Behavior on Partially Available Tables
Query Behavior on Partially Available Tables
You can specify how queries behave against partially available tables. In this
context, a partially available table is a table with either one or more offline
row data segments or one or more offline index segments for the index to be
used for that query.

Whether indexes with offline segments are considered when the best index
for a query is selected depends on the setting of the IGNORE PARTIAL
INDEXES option. If a query is processed and an error or warning message is
issued stating that a partial index was used, and you know that other fully
available but less optimal indexes exist, you can set the IGNORE PARTIAL
INDEXES option to ON to force the query processing to use the fully available
index.

Syntax
To specify the query behavior for all sessions, enter a line in the rbw.config file
using the following syntax.

To specify the query behavior for specific sessions, enter a SET command
using the following syntax.

OPTION PARTIAL_AVAILABILITY

ERROR

PRECHECK

WARN

INFO

SET AVAILABILITY

ERROR

PRECHECK

WARN

INFO

PARTIAL ;
Tuning a Warehouse for Performance 10-25

Syntax
Examples

The following examples illustrate how to specify query behavior with
partially available segments.

With an rbw.config file entry:

OPTION PARTIAL_AVAILABILITY INFO

With a SET command:

set partial availability error ;

PRECHECK Specifies that table availability is to be checked before the
query is processed. If a table is only partially available, an error
message is issued, and the query is not processed. The default
is PRECHECK.

INFO Specifies that the query is to be processed and the results
returned, even if a row data or index segment is unavailable. If
the results would be different if the table were fully available
(that is, if the server needs to access an offline segment to
process the query), an informational message to this effect is
issued along with the results.

WARN Same as INFO, but the message is a warning, not an informa-
tional message.

ERROR Specifies that the query is to be processed even if a row data or
index segment is unavailable. If the results would be different
if the table were fully available, no results are returned, and an
error message is issued. The query might process for a signif-
icant amount of time before determining that the results might
be affected.
10-26 Informix Red Brick Decision Server Administrator’s Guide

Use of Partially Available Indexes
Use of Partially Available Indexes
You can specify whether partially available indexes should be considered
when the best strategy for processing a given query is selected.

Syntax
To specify use of partially available indexes for all sessions, enter a line in the
rbw.config file using the following syntax.

To specify use of partially available indexes for specific sessions, enter a SET
command using the following syntax.

OPTION ONIGNORE_PARTIAL_INDEXES

OFF

SET ONIGNORE PARTIAL INDEXES

OFF

;

ON Specifies that only fully available indexes are to be considered in
selecting the best index for a query. If no applicable index is fully
available, an error message is issued, and the query fails.

OFF Specifies that all indexes, even partially available ones, are to be
considered in selecting the best index for a query. If a partially
available index is determined to be the best choice for a given query,
the setting for the PARTIAL AVAILABILITY option controls how the
query is processed.
Tuning a Warehouse for Performance 10-27

Setting the VARCHAR Column Fill Factor
Examples

The following examples illustrate how to specify the use of partially available
indexes.

With an rbw.config file entry:

OPTION IGNORE_PARTIAL_INDEXES OFF

With a SET command:

set ignore partial indexes off ;

Setting the VARCHAR Column Fill Factor
The VARCHAR column fill factor is an estimate of the expected typical size of
the VARCHAR column in a given table. It is specified as a percentage of the
maximum column length, with a default of 10 percent, and is declared as part
of a CREATE TABLE statement. To improve the performance of queries,
specify an accurate fill factor.

How the Server Uses the VARCHAR Fill Factor
The database server uses row numbers to identify and access rows within a
segment. For more information on row numbers, refer to “Pseudocolumns”
on page 9-16.

The database server assigns a certain number of row numbers to each block
according to the following rows-per-block formula. In a table with no
VARCHAR columns, the rows are fixed length. The number of rows per block,
or number of row numbers, is calculated precisely by dividing the block size
(8 kilobytes) by the row size. For tables containing VARCHAR columns, the
database server estimates the number of rows per block with the following
formula:

rows per block = block size / typical row size

A typical row size includes the size of all the columns and uses the fill factor
value for the VARCHAR column. For the effect of the VARCHAR fill factor
value on the row size, refer to “Example 1: Effect of the VARCHAR Fill Factor
on Number of Rows Per Block” on page 10-30.
10-28 Informix Red Brick Decision Server Administrator’s Guide

Effect of Fill Factor on Performance
Effect of Fill Factor on Performance
The number of row numbers reserved in each block varies inversely with the
fill factor setting. A higher fill factor results in fewer row numbers per block,
and a lower fill factor results in more row numbers per block.

If the fill factor is too high, too few row numbers are allowed in each block.
When all of these row numbers are used, the database server writes no more
rows to that block regardless of how much space is left in it. The unusable free
space in each block increases the storage space required for the table and
slows access because the server must access more blocks. “Example 2:
VARCHAR Fill Factor Too High” on page 10-31 illustrates this effect.

If the fill factor is too low, the number of row numbers is calculated as higher
than it actually is. In this case, every block is filled, but row numbers are
allocated to blocks that cannot be used because each block is too full to
contain any more rows. These unused row numbers have the following
effects:

■ TARGET indexes are less efficient.

Depending upon domain size, a TARGET index can have entries for
every row number in the table. Unused row numbers waste space in
the index, and large numbers of unused row numbers can affect
performance.

For more information on domain size, refer to the CREATE INDEX
section of the SQL Reference Guide.

■ The MAXROWS PER SEGMENT limit might be hit prematurely.

This limit estimates the table size in the form of the maximum
number of rows per segment. The unused row numbers are counted
toward the maximum number or rows allowed in the segment.
“Example 3: VARCHAR Fill Factor Too Low” on page 10-32 illus-
trates this effect.

For more information on this parameter, refer to “Setting the
MAXSEGMENTS and MAXROWS PER SEGMENT Parameters” on
page 5-12.
Tuning a Warehouse for Performance 10-29

Effect of Fill Factor on Performance
A small number of unused row numbers does not significantly impact
performance. Generally, it is better to have unused row numbers than unused
space. Err on the side of underestimating the fill factor rather than over-
estimating. The best performance comes from setting the fill factor as
precisely as possible.

Example 1: Effect of the VARCHAR Fill Factor on Number of Rows Per Block

This example illustrates how the VARCHAR fill factor affects the typical row
size that the database server uses to estimate the number of row numbers per
block.

Suppose you create a table with the following CREATE TABLE statement:

CREATE TABLE supplier (
supkey integer,
type char(20),
name varchar (30),
street varchar (30),
city char (20),
state char (5)
zip char (10));

Because this statement does not specify the WITH FILLFACTOR clause, the fill
factor value defaults to 10 percent for both the name and street columns. The
server calculates the typical row size with this default fill factor value, as the
following equation shows:

typical row size = length(SUPKEY) + length(TYPE) +
((fillfactor * length(NAME)) + 2-byte

offset) +
((fillfactor * length(STREET)) + 2-byte

offset) +
length(CITY) + length(STATE) +

length(ZIP) +
1-byte null indicator

= 4 + 20 + ((10 percent * 30) + 2) +
((10 percent * 30) + 2) + 20 + 5 + 10

+ 1
= 70 bytes

The server calculates the number of rows per block for the Supplier table with
the following equation:

rows per block = (block size - overhead) /
(typical row size + overhead)

= (8192 - 4) / (70 + 2)
= 113.72
10-30 Informix Red Brick Decision Server Administrator’s Guide

Effect of Fill Factor on Performance
Example 2: VARCHAR Fill Factor Too High

This example illustrates how too high a VARCHAR fill factor value might
cause unusable free space in each block.

Suppose you create a table with the following CREATE TABLE statement that
specifies a fill factor value of 90:

CREATE TABLE tab1 (
col1 integer,
col2 integer,
col3 char (18),
col4 varchar (100) WITH FILLFACTOR 90);

The database server calculates the typical row size and the number of rows
per block for the Tab1 table with the following equations:

typical row size = length(col1) + length(col2) + length(col3)
+

((fillfactor * length(col4)) + 2-
byte offset) +

1-byte null indicator
= 4 + 4 + 18 + (90 percent * 100) + 2 + 1
= 119

rows per block = (block size - overhead) /
(typical row size + overhead)

= (8192 - 4) / (119 + 2)
= 67.67

However, if the actual size of the values in the VARCHAR column is 70 bytes,
each row requires less space. The following equations show the actual space
used for this example and the amount of wasted space per block:

actual row size = 4 + 4 + 18 + (70) + 2 + 1
 = 99

actual space used = actual rowsize * rows-per-block
 = 99 * 67
 = 6633 bytes

The following equation estimates the amount of wasted space per block:

wasted space = (blocksize - overhead) - actual space used
 = 8188 - 6633
 = 1555 bytes per block
Tuning a Warehouse for Performance 10-31

Effect of Fill Factor on Performance
Example 3: VARCHAR Fill Factor Too Low

This example illustrates how too low a VARCHAR fill factor value might
cause insert problems.

The Supplier table in “Example 1: Effect of the VARCHAR Fill Factor on
Number of Rows Per Block” on page 10-30 uses the default value of 10
percent for the fill factor. The database server calculates the typical row size
and the number of rows per block for the Supplier table with the following
equations:

typical row size = length(SUPKEY) + length(TYPE) +
((fillfactor * length(NAME)) + 2-byte

offset) +
((fillfactor * length(STREET)) + 2-byte

offset) +
length(CITY) + length(STATE) +

length(ZIP) +
1-byte null indicator

= 4 + 20 + ((10 percent * 30) + 2) +
((10 percent * 30) + 2) + 20 + 5 + 10

+ 1
= 70

rows per block = (block size-overhead)/(typical row
size+overhead)

= (8192 - 4) / (70 + 2)
= 113.72

However, if the actual average size of the values in the name column is 15
bytes and 20 bytes in the street column, the actual row size is 98 bytes. The
block becomes full before the rows-per-block value is reached. The following
equations show that the database server cannot insert 113 rows because no
more space is left in the block:

actual row size = 4 + 20 + (15 + 2) + (20 + 2) + 20 + 5 + 10
= 98

actual number of rows per block
= (blocksize - overhead) / (actual rowsize +

overhead)
= (8192 - 4) / (98 + 2) = 81.88
10-32 Informix Red Brick Decision Server Administrator’s Guide

Effect of Fill Factor on Performance
In this case, the database server inserts only 82 rows in the first block. The
database server inserts the next row in the second block but assigns it row
number 113. Row numbers 83 through 112 are unused (31 unused row
numbers).

Unused row numbers count toward the value specified in MAXROWS PER
SEGMENT. For example, if you specify a value of 2500 for MAXROWS PER
SEGMENT and leave the default value for fill factor, you can insert only about
1800 rows, as the following equations show:

CREATE TABLE supplier (
supkey integer,
type char(20),
name varchar (30),
street varchar (30),
city char (20),
state char (5)
zip char (10))

MAXROWS PER SEGMENT 2500;

number of blocks = MAXROWS PER SEGMENT / rows per block
= 2500 / 113
= 22.12 blocks

actual number rows insert = actual rows per block * num blocks
= 82 * 22
= 1804 rows

The insertion of the 1805th row returns the following error message:

** ERROR ** (654) Data cannot be inserted into the table
because the maximum number of rows per segment has been
reached.
Tuning a Warehouse for Performance 10-33

Monitoring Accuracy of the VARCHAR Fill Factor
Monitoring Accuracy of the VARCHAR Fill Factor
To evaluate the effectiveness of a fill factor value, use the CHECK TABLE
statement with the VERBOSE option and obtain the current fill factor value.

Using CHECK TABLE with the VERBOSE Option

The CHECK TABLE statement with the VERBOSE option displays the
following pertinent segment statistics for a table.

Tip: The storage reclen value and average reclen value should be a similar size. If you
slightly underestimate the fill factor, as is recommended, average reclen will be
slightly larger than storage reclen.

CHECK TABLE
Segment Statistics Field Description

storage reclen Length (in bytes) the server expects each record to be
based on the fill factor of VARCHAR columns. The
typical row size formula in “Example 1: Effect of the
VARCHAR Fill Factor on Number of Rows Per Block”
on page 10-30 calculates this value.

average reclen Actual average size (in bytes) of records in the column

rows/block Number of row numbers the server allocates per block
based on the fill factor of VARCHAR columns. “How
the Server Uses the VARCHAR Fill Factor” on
page 10-28 shows the formula to calculate this value.

unused RowIDs Number of row numbers currently not used by actual
rows

unusable freespace Number of bytes of free space in blocks where all
assigned row numbers are used and the amount of free
space exceeds the size of a typical rows. Nonzero
values appear in this field when the fill factor is
higher than the actual row size. Refer to “Example 2:
VARCHAR Fill Factor Too High” on page 10-31.
10-34 Informix Red Brick Decision Server Administrator’s Guide

Monitoring Accuracy of the VARCHAR Fill Factor
The following CHECK TABLE statement produces segment statistics for the
Supplier table. Refer to “Example 1: Effect of the VARCHAR Fill Factor on
Number of Rows Per Block” on page 10-30.

RISQL> CHECK TABLE supplier DIRECTORY ’/qa/local/sct-pubs/
varchar-aroma/’

> VERBOSE;
INFORMATION
Table: 7 Segment: 13 is ok
No inconcistencies were detected.

The VERBOSE option produces segment statistics in the directory that the
DIRECTORY keyword specifies. The name of the output file for the previous
CHECK TABLE statement starts with the table and segment numbers, as the
following filename shows:

chk_7_13_rep.19990909.083256.25579

The CHECK TABLE statement produces the following segment statistics for
the Supplier table:

Segment statistics:
 active rows:9, deleted rows:0, total blocks:2, free blocks:0
 rows/block:113, storage reclen:70, average reclen:98, indirect rows:0
 max reclen:124, longest rec:106, min reclen:64, shortest rec:85
 freespace:7289, unused RowIDs:104, unusable freespace:0

The following descriptions explain the values in this sample output:

■ The value of storage reclen is 70, and average reclen is 98, which means
that the actual average length of the VARCHAR columns is longer
than the fill factor. For the possible consequences of estimating too
low a fill factor value, refer to “Example 3: VARCHAR Fill Factor Too
Low” on page 10-32.

■ The value of freespace is 7289 and unused RowIDs is 104. These unused
bytes and row numbers reside mainly in the end of the last block
allocated.

For more information on the syntax of the CHECK TABLE statement, refer to
the SQL Reference Guide.
Tuning a Warehouse for Performance 10-35

Modifying the VARCHAR Fill Factor
Obtaining Current Fill Factor Value

To obtain the current fill factor value for a VARCHAR column and the lengths
of all columns in a table, query the RBW_COLUMNS system table, as the
following sample statement shows:

RISQL> select name, type, length, fillfactor, nulls
> from rbw_columns where tname = ’SUPPLIER’;

This query produces the following results, which show that the current fill
factor is the default value of 10 percent for the name and street columns:

NAME TYPE LENGTH FILLFA NULL

SUPKEY INTEGER 4 0 N
TYPE CHAR 20 0 N
NAME VARCHAR 30 10 N
STREET VARCHAR 30 10 N
CITY CHAR 20 0 N
STATE CHAR 5 0 N
ZIP CHAR 10 0 N

Modifying the VARCHAR Fill Factor
You might want to adjust the fill factor for a VARCHAR column for one of the
following reasons:

■ To reduce the amount of wasted disk space

Refer to “Example 2: VARCHAR Fill Factor Too High” on page 10-31
for a description of how too high a fill factor value might cause
wasted disk space.

■ To reduce the number of row numbers per block.

Refer to “Example 3: VARCHAR Fill Factor Too Low” on page 10-32
for a description of how too low a fill factor value might cause
TARGETjoin or INSERT problems.

To adjust the fill factor for a VARCHAR column, use the ALTER TABLE
CHANGE FILLFACTOR statement. This statement does not take effect until
you execute an ALTER TABLE statement that adds or drops a column. Then
the whole table is rewritten using the new fill factor.
10-36 Informix Red Brick Decision Server Administrator’s Guide

Setting the Index Fill Factor
For example, you might want to adjust the fill factor to reduce the amount of
wasted space in the Tab1 table in “Example 2: VARCHAR Fill Factor Too
High” on page 10-31. The Tab1 table currently has a fill factor value of 90
percent for the Col4 VARCHAR column, but the actual average length is 70
bytes, which is 70 percent of the VARCHAR(100) specification in the CREATE
TABLE statement.

To more closely match the actual average length of the VARCHAR column
values, specify a fill factor of 70. The following sample ALTER TABLE
statement changes the fill factor for the Tab1 table:

ALTER TABLE tab1 ALTER COLUMN col4
CHANGE FILLFACTOR 70;

For syntax information on the ALTE R TABLE statements, refer to the SQL
Reference Guide.

Setting the Index Fill Factor
The index fill factor is used to determine how full to fill each new node of a
B-TREE index when the node is initially built. (Each node in a B-TREE index
corresponds to a file system block.) If new index nodes are not completely
filled, subsequent incremental load operations can insert entries in the index
without causing the nodes (blocks) to split. Such splits slow incremental
loads. Indexes built with a fill factor of less than 100 percent require more
storage but can provide better incremental load, update, and insert
performance.

The default fill factor is 100 percent. If the table and index are to be loaded
once and then used only for query operations, with no incremental load,
insert, or update operations, 100 percent is the appropriate fill factor.
However, if you know that the table will grow, you can specify a fill factor
that will permit the index nodes to accommodate the growth without
splitting.

You can specify system default fill factors in the rbw.config file. To specify fill
factors for individual indexes, use the CREATE INDEX or ALTER INDEX state-
ments. All fill factors default to 100 percent unless otherwise specified. To
force the TMU to use a user-defined fill factor, you must include the OPTIMIZE
clause of the LOAD DATA statement. If the OPTIMIZE clause is not present, the
TMU uses 100-percent fill factors, ignoring any specified fill factors.
Tuning a Warehouse for Performance 10-37

Setting the Index Fill Factor
For more information about fill factor in relation to index size estimates, refer
to “Index Fill Factors” on page 4-23.

Example

The following figure illustrates an index with a fill factor of 100 percent and
the same index with a fill factor of 66 percent, after an initial load.

At 100 percent, each node fills completely before a new node is started. All
the index data fits in three leaf nodes (blocks), two of which are completely
full and a third almost full. If more rows of data are added that require an
index entry in either of the full nodes, the nodes must be split.

At 66 percent, the same index requires almost five nodes (blocks), but space
remains in each index node to accommodate additional row data added to
the table.

Figure 10-3
Fill Factor and Index Nodes

Fill factor: 100 percent Fill factor: 66 percent

Row data Index leaf nodes

Index root node
Index root node

Row data

Index leaf nodes
10-38 Informix Red Brick Decision Server Administrator’s Guide

Setting the Index Fill Factor
Syntax

To specify system default fill factors for all sessions, enter the appropriate
line(s) in the rbw.config file using the following syntax.

Usage Notes

To specify a different fill factor for a specific user-created index, use a CREATE
INDEX…WITH FILLFACTOR x statement when you create the index.

To specify or change a fill factor for a specific automatically created index, use
an ALTER INDEX…CHANGE FILLFACTOR x statement after determining the
index name from the RBW_INDEXES table.

When a new index is created, the fill factor used for that index is determined
from the rbw.config file for automatic indexes and from the CREATE INDEX
statement or rbw.config file for user-defined indexes. If no fill factor is
specified, 100 is used. This fill factor is stored in the RBW_INDEXES system
table. For each new node added to that index during the initial or incremental
load operations, the fill factor used is the one stored in RBW_INDEXES. This
fill factor can be changed on an index-by-index basis with the ALTER INDEX
statement.

PI xFILLFACTOR

yFILLFACTOR

zFILLFACTOR

STAR

SI

FILLFACTOR PI x Specifies the system default fill factor for all primary
indexes.

FILLFACTOR STAR y Specifies the system default fill factor for all STAR
indexes.

FILLFACTOR SI z Specifies the system default fill factor for all non-
STAR secondary indexes (any non-STAR index created
with a CREATE INDEX statement).

x, y, z Integers ranging from 1 to 100, indicating percentage.
Default values are 100.
Tuning a Warehouse for Performance 10-39

Finding the Fill Factor Used for a Specific Index
For those indexes built automatically by the TMU (primary key indexes and
any B-TREE, STAR, and TARGET indexes created with a CREATE INDEX
statement prior to the load operation), the OPTIMIZE clause must be present
in the LOAD DATA statement in order to use user-specified fill factors.

Finding the Fill Factor Used for a Specific Index
To determine the fill factor used for a specific index, query the RBW_INDEXES
system table as follows:

select name, fillfactor
from rbw_indexes
where name = ’index_name’;

Important: Actual use of the fill factor depends on whether the TMU OPTIMIZE
mode is set.

Deciding Whether to Change Default Fill Factors
To decide whether to change a default fill factor (100 percent for all indexes),
determine whether the tables in your database are expected to grow over
time. If any of them will grow, estimate the expected growth and decide if the
reduction in load time is enough to justify the additional space required by
filling nodes less than 100 percent full.

Important: This discussion assumes the expected growth throughout the index is
uniform. If you expect growth at the ends of the index or in new segments of a
segmented index, use the default fill factor.

To see how the fill factor affects the amount of storage required for an index,
consider the following formula, used to calculate how many elements are
stored in each index node:

Each index node is 8172 bytes and corresponds to one 8-kilobyte file system
block minus 20 bytes overhead, and keysize is the width of the key column,
plus 6 bytes of address.

Elements per index node fillfactor
100

-----------------------X
8172

keysize 6+
----------------------------=
10-40 Informix Red Brick Decision Server Administrator’s Guide

Changing an Index Fill Factor
Therefore, a smaller fill factor reduces the maximum size allowed for an
index key.

Example

Assume a key size of 10 bytes on a table with 50,000 rows. The number of 8-
kilobyte blocks required to store the index for various fill factors is calculated
using the formulas in “Estimating the Size of Indexes” on page 4-23. The
results are as follows.

If this table is to be loaded once with no anticipated additions, use a fill factor
of 100.

If you expect this table to grow to twice its initial size, a fill factor of 50 is a
reasonable choice. Likewise, if the table is loaded initially with data that is
only 10 percent of what you expect it to contain, a fill factor of 10 is
reasonable.

Important: If you choose a low fill factor, the resulting indexes can be large and affect
query performance negatively.

Changing an Index Fill Factor
The fill factor specifies the percentage of space filled in new index nodes as
they are created. You might want to change the fill factor for an index for one
of the following reasons:

■ To reduce the amount of wasted disk space

The amount of empty space left in each node affects the amount of
space required when an index is built.

■ To improve incremental load, update, and insert performance

Fill factor affects the frequency with which nodes fill completely and
must be split.

Fill Factor Elements Per Node Blocks

10 81 627

50 409 124

100 817 63
Tuning a Warehouse for Performance 10-41

Creating Additional Indexes
To change the fill factor used during the creation of new index nodes, use the
ALTER INDEX…CHANGE FILLFACTOR statement. Altering the fill factor on an
index that is not empty affects only new nodes built during future load
operations in optimize mode. It does not change or rebuild existing nodes. To
cause existing nodes to be rebuilt with a new fill factor, you must change the
fill factor and then REORG the index or drop and re-create it.

Creating Additional Indexes
When you create a table containing a primary key, a B-TREE index is automat-
ically created on the primary key column(s). Creating additional indexes
often improves query performance. In determining whether to create
additional indexes, weigh the improvement in performance against the
additional space required to store the index and the time required to build
and update the index when changes are made to the tables upon which the
index is based.

For fact tables that are queried with constraints on foreign key columns, you
can improve query performance by creating STAR indexes using the foreign
keys that will be constrained. The order of the foreign keys in a STAR index
affects performance on particular queries. The best performance is gained
from a STAR index whose leading foreign key matches the query constraint.

If all the columns in the primary key are also columns in foreign keys,
creating a STAR index that includes all the primary key columns might make
the primary key B-TREE index redundant. In this case, you can save disk
space and processing overhead by dropping the primary key B-TREE index
after creating the primary key STAR index.

You can also improve performance for multi-table joins where the tables are
related by primary key/foreign key relationships by enabling TARGETjoin
processing. To enable TARGETjoin, create indexes on the foreign key columns
of the referencing (fact) table. For information on TARGETjoin processing,
refer to “TARGETjoin Query Processing” on page 10-59 and to Chapter 4,
“Planning a Database Implementation.”

If some columns contain weakly selective constraints, consider creating
TARGET indexes to greatly improve query performance for queries
constraining on those columns. For detailed information, refer to “TARGET
Indexes” on page 4-10.
10-42 Informix Red Brick Decision Server Administrator’s Guide

Understanding Query Processing
Whenever a dimension table contains a foreign key that is not also a primary
key (that is, the table references an outboard table), consider either creating
an additional B-TREE or TARGET index on each foreign key column for better
performance or creating a STAR index.

The EXPLAIN statement can help you determine what indexes are being used
for a given query. For information about EXPLAIN, refer to “EXPLAIN
Statement” on page 10-55.

For more information about using additional indexes to improve perfor-
mance and their requirements, refer to “Determining When to Create
Additional Indexes” on page 4-4.

Understanding Query Processing
Red Brick Decision Server evaluates a query and automatically decides the
best way to process it, based on the indexes that are available. The server goes
through many phases while processing a query. The following sections list
the join algorithms Red Brick Decision Server uses, illustrate the phases of
query processing, and discuss how to use the EXPLAIN command. This
command shows you what phases a particular query goes through and what
steps you can take to optimize query performance.

Join Algorithms
Generally, queries that involve joins might require tuning. Red Brick Decision
Server uses the following algorithms to process joins:

■ STARjoin

■ TARGETjoin

■ B-TREE one-to-one match (nested loop join)

■ Hybrid hash join

■ Naive one-to-one match (cross join)
Tuning a Warehouse for Performance 10-43

Join Algorithms
The server chooses the join method based on which indexes are available. At
runtime, the server evaluates the query and makes decisions about the query
execution plan based on the following criteria:

1. If the appropriate STAR index exists to join the tables, the query uses
the STARjoin algorithm. An appropriate STAR index contains some or
all of the keys that are constrained in the query.

2. If the appropriate STAR index exists to join the tables, and if TARGET
or B-TREE indexes exist on the foreign key columns in the referencing
(fact) table, the query uses either the STARjoin or TARGETjoin
algorithm, depending on which has the best indexes available for the
join operation.

3. If the appropriate STAR index does not exist, but TARGET indexes
exist on the foreign key columns in the referencing (fact) table, the
query uses the TARGETjoin algorithm.

4. If the appropriate STAR index does not exist, but either a B-TREE or a
TARGET index is present over the joining columns, that index is used
with the B-TREE one-to-one match algorithm. If both a B-TREE and a
TARGET index exist, the server chooses the best index for the join
operation.

5. If no indexes are present over the joining columns and the join is an
equijoin (the query constraints are equality conditions), the hybrid
hash join algorithm is used.

6. If no indexes are present over the joining columns and the join is not
an equijoin, the cross join algorithm is used. The cross join algorithm
calculates all possible combinations of the joining columns (the
Cartesian product). Therefore, cross joins are disallowed unless the
OPTION CROSS JOIN parameter is set to ON. This requirement
ensures that users do not issue cross join queries inadvertently; by
omitting a join condition, for example.

These criteria are simplified for the purpose of this discussion. Many other
variables add complexity to the choices Red Brick Decision Server makes.
10-44 Informix Red Brick Decision Server Administrator’s Guide

Join Algorithms
The following figure illustrates the decision-making process that the server
uses to join tables.

Figure 10-4
Decisions to Join Tables

End

End

End

End

End

End

Start

STAR Index?

YES

TARGET or
B-TREE Indexes
on foreign keys?

NO

YES

STARjoin
or

TARGETjoin

STARjoin

TARGET
Indexes on

foreign keys?

YES

NO

NO

TARGETjoin

B-TREE or
TARGET
Index?

NO

YES

B-TREE
1-1 Match

No
Indexes

Equijoin?

YES

NO

Hybrid
Hash Join

Is this the
query you
meant to

write?

NO

Rewrite
the query

Naive 1-1
Match

(Cross Join)

YES
Tuning a Warehouse for Performance 10-45

Operator Model
Operator Model
Red Brick Decision Server uses an object-oriented operator model to evaluate
a query. Stages of the query are broken down into operators, which are
elemental pieces of the query execution plan. Each operator has its own
portion of work to do before passing the execution along to the next operator.

The output of the EXPLAIN command lists the operators that are used in a
given query execution plan. By understanding what each operator does and
which indexes are being used in a query, you can devise ways of improving
query performance by one or more of the following means:

■ Re-writing the query

■ Adding or dropping indexes

■ Changing the schema design

■ Changing the values of tuning parameters

■ Modifying the physical layout of your database and database files

For more information on the EXPLAIN command, refer to “EXPLAIN
Statement” on page 10-55.

The following is an alphabetical list of the operators with a brief description
of each, as well as a brief description of the fields associated with each
operator that appears in the EXPLAIN output.

Advisor

This operator produces advisor information for the Vista option.

B-TREE 1-1 Match

Given a key value, this operator looks it up in the index.

Join Type Lists the type of join performed by the operator.

Possible values: InnerJoin, LeftOuterJoin, Right-
OuterJoin, FullOuterJoin. For information on the
different types of joins, refer to the SQL Reference
Guide.
10-46 Informix Red Brick Decision Server Administrator’s Guide

Operator Model
B-TREE Scan

This operator scans an index or a range of keys in an index.

Tip: Red Brick Decision Server uses start-stop predicates whenever possible, even if
there are no conjunctions in the WHERE clause.

Index Lists the name of the index used in the operation and
the name of the table on which the index is defined.

Reverse Order For multiple-column indexes, indicates if the index is
being scanned in the key order (FALSE) of the index or
in the reverse key order (TRUE) of the index. It is more
efficient to scan an index in the order of its keys than
in the reverse order. If Reverse Order = T, you might
improve performance by creating an additional index
with the key order reversed in the CREATE INDEX
statement.

Possible values: TRUE, FALSE.

Predicate A predicate is a restricted condition on the query. For
example:

...where promo_type = 400

Predicates can have one condition or multiple
conditions.

Start-Stop Predicate A start-stop predicate is a predicate with a restrictive
range, such as a conjunction in the WHERE clause.
This allows only a restricted portion of the index to be
scanned, which increases the efficiency of the index
scan, thus improving query performance. For
example, the following predicate restricts the range
on Col1 between 5 and 8:

... where col1 > 5 and col1 < 8

If the domain of Col1 is all integers and an index is
defined on Col1, this allows a very efficient, restricted
scan of the index, which is good for query
performance.
Tuning a Warehouse for Performance 10-47

Operator Model
Bit Vector Sort

This operator sorts the RBW_SEGID and RBW_ROWNUM bits from the
pseudocolumns containing that information.

Check

This operator performs consistency checking of tables and indexes.

Choose Plan

This operator represents a dynamic decision point made at runtime. Only
one of the choices is executed at runtime.

Delete

This operator performs the DELETE operation.

Num Prelims Lists the number of preliminary operations that are
performed before the choice is made as to which plan
to use. These preliminary operations are performed
regardless of which plan is selected.

Num Choices Lists the number of choices the server chooses from at
runtime.

Type Lists the type of plan.

Possible values: Unknown, General, STARjoin.

Delete All Indicates (FALSE) if there is a search condition on the
DELETE operation, as specified in the WHERE clause
of the DELETE statement, and (TRUE) if there is no
search condition.

Possible values: TRUE, FALSE.
10-48 Informix Red Brick Decision Server Administrator’s Guide

Operator Model
Delete Cascade

This operator finds the data to be deleted in the referenced table for a DELETE
CASCADE operation.

Delete Refcheck

This operator checks whether the DELETE operation will violate referential
integrity. If it finds a violation of referential integrity, the DELETE operation is
disallowed.

Table The name of the table from which the rows are
deleted.

Constraint Name The name of the constraint that references another
table involved in the DELETE operation.

Delete All Indicates (FALSE) if there is a search condition on the
DELETE operation, as specified in the WHERE clause
of the DELETE statement, and (TRUE) if there is no
search condition.

Possible values: TRUE, FALSE.

Table The name of the table from which the rows are
deleted.

Delete All Indicates (FALSE) if there is a search condition on the
DELETE operation, as specified in the WHERE clause
of the DELETE statement, and (TRUE) if there is no
search condition.

Possible values: TRUE, FALSE.

Table The name of the table from which the rows are
deleted.

Constraint Name The name of the constraint that references another
table involved in the DELETE operation, used to check
referential integrity.
Tuning a Warehouse for Performance 10-49

Operator Model
Exchange

This operator splits an operation for parallelism.

Execute

This operator coordinates the interaction between operators. Execute is the
first operator in an EXPLAIN report and handles the server side disposition of
the data.

For client/server connectivity, this operator formats and packs up the data
for shipping through ODBC to the client. It sets the table lock type.

For Export operations, this operator formats and writes the data to the output
file or pipe.

Functional Join

Given the segment ID and row number, this operator reads the row.

Exchange Type Lists the type of operation to be parallelized.

Possible values: Unknown, Functional Join, STARjoin,
Table Scan, Upper Hash 1-1 Match, Lower Hash 1-1
Match.

Table Locks Possible values: Read_Only, Read_Key, Read_Data,
Write_Data, Write_Blocking.

Number of Tables The number of tables involved in the operation and
their names.
10-50 Informix Red Brick Decision Server Administrator’s Guide

Operator Model
General Purpose

This operator is used for dynamic substitutions such as SELECT COUNT(*).

Hash 1-1 Match

This operator performs a hybrid hash join.

Hash AVL Aggregate

This operator is used for aggregate and GROUP BY processing.

Operation Describes the operation to be performed by the
operator.

Count: Optimization for COUNT(*) processing
based on table size when there is no
predicate, grouping, HAVING clause, and
so on.

Textsize: Processing of ‘SELECT @@textsize’
variable selection, used by some query
tools.

Join Type Lists the type of join performed by the operator.

Possible values: InnerJoin, LeftOuterJoin, Right-
OuterJoin, FullOuterJoin. For information on the
different types of joins, refer to the SQL Reference
Guide.

Grouping Indicates if GROUP BY processing is used.

Possible values: TRUE, FALSE.

Distinct Indicates if SELECT DISTINCT processing is used.

Possible values: TRUE, FALSE.
Tuning a Warehouse for Performance 10-51

Operator Model
Insert

This operator is used to insert into a table.

Merge Sort

This operator is used to perform sorts.

Naive 1-1 Match

This operator is used to compute the Cartesian product (cross join) of two
tables.

RISQL Calculate

This operator is used to process RISQL display functions.

Simple Merge

This operator takes two input lists and combines them.

Table The name of the table being inserted into.

Mode Indicates whether the INSERT operation is written to
disk as soon as each row is received (Immediate) or
whether the data is stored in a buffer and then written
to disk all at once when the operation has completed
(Delayed).

Values indicates an INSERT operation using the
VALUES keyword, as follows:

insert into table1 values (a, b);

Possible values: Values, Delayed, Immediate.

Distinct Indicates if SELECT DISTINCT processing is used.

Possible values: TRUE, FALSE.
10-52 Informix Red Brick Decision Server Administrator’s Guide

Operator Model
Sort 1-1 Match

This operator performs a matching sort of two sorted lists.

STARjoin

This operator performs the STARjoin processing.

Subquery

This operator is used to process a subquery.

Match type Possible values: Union, Intersect, Except.

Join Type Lists the type of join performed by the operator.

Possible value: InnerJoin. For information on the
different types of joins, refer to the SQL Reference
Guide.

Num Facts Lists the number of fact (referencing) tables involved
in the operation.

Num Potential
Dimensions

Lists the number of potential dimension (referenced)
tables involved in the operation.

Fact Table Lists the name of the fact table(s) involved in the
operation.

Potential STAR
Indexes

For each fact table, lists the names of the potential
STAR indexes involved in the STARjoin operation.

Dimension Table(s) Lists the names of the dimension (referenced) tables
that participate in the STAR index.

Scalar Indicates a scalar subquery.

Possible values: TRUE, FALSE.

Correlated Indicates a correlated subquery.

Possible values: TRUE, FALSE.
Tuning a Warehouse for Performance 10-53

Operator Model
Table Scan

This operator scans a table.

TARGETjoin

This operator performs the TARGETjoin processing, which efficiently joins
tables related by primary key/foreign key relationships.

TARGET Scan

This operator performs TARGET index processing and processing of certain
INTERSECT and UNION operations that use a B-TREE index.

Table Indicates the name of the table being scanned.

Predicate Indicates the predicate (the restrictive condition) on
the table being scanned.

Table Indicates the name of the table involved in the
operation.

Predicate Indicates the predicate (the restrictive condition) on
the operation.

Num Indexes Indicates the number of indexes involved in the
operation.

Index(s) Indicates the name of each index involved in the
operation.

Table Indicates the name of the table involved in the
operation.

Predicate Indicates the predicate (the restrictive condition) on
the operation.

Num Indexes Indicates the number of indexes involved in the
operation.

Index(s) Indicates the name of each index involved in the
operation.
10-54 Informix Red Brick Decision Server Administrator’s Guide

EXPLAIN Statement
Update

This operator performs an update operation.

Virtual Table Scan

This operator manages internal results stored in virtual memory.

EXPLAIN Statement
The EXPLAIN statement provides output detailing a query execution path.
EXPLAIN indicates which operators and indexes are used. Use EXPLAIN to
understand how a query is going to execute. Based on the information, you
might decide to create or drop indexes to tune the query for better
performance.

Some parts of the query execution path are determined dynamically during
query execution. In those cases, EXPLAIN indicates the possible paths. When
you run a query with SET STATS INFO enabled, the actual query execution
path for each Choose Plan operator is printed in informational messages. You
can also access graphical EXPLAIN support from the ISQL window of the
Administrator tool. This tool displays a graphical view of the query operator
tree and includes additional details on operator arguments.

EXPLAIN also shows where parallelism is used in the part of the report on the
Exchange operator. When you run a query with SET STATS INFO enabled, the
degree of parallelism that the query actually used for each Exchange operator
is printed in informational messages.

Mode Indicates whether the UPDATE operation is written to
disk as soon as each row is processed (Immediate) or
whether the data is stored in a buffer and then written
to disk all at once when the operation completes
(Delayed).

Possible values: Delayed, Immediate.

Table Indicates the name of the table being updated.
Tuning a Warehouse for Performance 10-55

EXPLAIN Statement
In the EXPLAIN report, each operator is indicated by dashes (—) followed by
its name in capital letters. Each operator name is followed by an ID number
that is unique to the query. This ID is used to track which operator is
performing which part of the query-processing work. Descriptive infor-
mation about the actions the operator is performing follows the ID number.
For information on the operators, refer to “Operator Model” on page 10-46.

The following example shows the report on the Execute operator from a
typical EXPLAIN report:

- EXECUTE (ID: 0) 2 Table locks (table, type): (PROMOTION,
Read), (SALES, Read_Only)

Each EXPLAIN query-processing report begins with the word
“EXPLANATION” followed by the Execute operator.

Example

The following example shows the output from EXPLAIN for a simple join of
the Sales and Promotion tables from the Aroma database:

RISQL> explain select sales.promokey, dollars
>from promotion, sales
>where sales.promokey = promotion.promokey;
EXPLANATION
[
- EXECUTE (ID: 0) 2 Table locks (table, type): (PROMOTION,
Read_Only), (SALES, Read_Only)
--- EXCHANGE (ID: 1) Exchange type: Table Scan
----- TABLE SCAN (ID: 2) Table: SALES, Predicate: <none>
]
RISQL>

In this example, the report shows read-only locks on the Promotion and Sales
tables. The tables will be joined using a B-TREE one-to-one match join with
the Promotion_pk_idx B-TREE index.
10-56 Informix Red Brick Decision Server Administrator’s Guide

EXPLAIN Statement
Example

The following example adds a constraint to the previous example:

RISQL> explain select sales.promokey, dollars
> from promotion, sales
> where sales.promokey = promotion.promokey
> and promotion.promo_type = 400;
EXPLANATION
[
- EXECUTE (ID: 0) 5 Table locks (table, type): (PROMOTION,
Read_Only), (SALES, Read_Only), (PERIOD, Read_Only),
(PRODUCT, Read_Only), (STORE, Read_Only)
--- CHOOSE PLAN (ID: 1) Num prelims: 1; Num choices: 2; Type:
StarJoin;

 Prelim: 1; Choose Plan [id : 1] {
 BIT VECTOR SORT (ID: 2)
 -- TABLE SCAN (ID: 3) Table: PROMOTION, Predicate:
(PROMOTION.PROMO_TYPE)
= (400)
 }

 Choice: 1; Choose Plan [id : 1] {
 EXCHANGE (ID: 4) Exchange type: Functional Join
 -- FUNCTIONAL JOIN (ID: 5) 1 tables: SALES
 ---- EXCHANGE (ID: 6) Exchange type: STARjoin
 ------ STARJOIN (ID: 7) Join type: InnerJoin, Num facts:
1, Num potential
dimensions: 4, Fact Table: SALES, Potential Indexes:
SALES_STAR_IDX;
Dimension Table(s): PERIOD, PRODUCT, STORE, PROMOTION
}

 Choice: 2; Choose Plan [id : 1] {
 EXCHANGE (ID: 8) Exchange type: Table Scan
 -- FUNCTIONAL JOIN (ID: 9) 1 tables: PROMOTION
 ---- BTREE 1-1 MATCH (ID: 10) Join type: InnerJoin;
Index(s): [Table: PROM
OTION, Index: PROMOTION_PK_IDX]
 ------ TABLE SCAN (ID: 11) Table: SALES, Predicate: <none>
}

]
RISQL>
Tuning a Warehouse for Performance 10-57

EXPLAIN Statement
In addition to the read-only locks from the previous example, this plan shows
a choice that the server will make at runtime. Choice 1 is a STARjoin using the
STAR index Sales_star_idx, and choice 2 is a B-TREE one-to-one match (nested
loop join) using the Promotion_pk_idx B-TREE index. There are several places
where parallelism might occur (shown by the Exchange operators). In
Choice 1, the STARjoin can be parallelized. In Choice 2, the B-TREE one-to-one
match can be parallelized.

If you now run the query with SET STATS INFO enabled, you get the following
results:

RISQL> set stats info;
RISQL> select sales.promokey, dollars
> from promotion, sales
> where sales.promokey = promotion.promokey
> and promotion.promo_type = 400;
** STATISTICS ** (500) Compilation = 00:00:00.19 cp time,
00:00:00.23 time, Logical IO count=57
PROMOKEY DOLLARS
 172 348.00
 172 128.00
...

181 48.00
 165 79.75
** STATISTICS ** (1457) EXCHANGE (ID: 4) Parallelism over 1
times High: 4 Low: 4 Average: 4.
** STATISTICS ** (1457) EXCHANGE (ID: 6) Parallelism over 1
times High: 1 Low: 1 Average: 1.
** STATISTICS ** (1458) CHOOSE PLAN (ID: 1) Choice: 1 was
chosen 1 times.
** STATISTICS ** (1459) CHOOSE PLAN (ID: 1) STARjoin on 1
tables was done 1 times.
** STATISTICS ** (1460) CHOOSE PLAN (ID: 1) used Index
SALES_STAR_IDX of Table SALES 1 times for STARjoin.
** STATISTICS ** (500) Time = 00:00:06.48 cp time, 00:00:06.99
time, Logical IO count=307
** INFORMATION ** (256) 392 rows returned.
RISQL>

This output shows that Choice 1, the STARjoin, was actually executed. The
degree of parallelism on the Exchange (ID=4) was 4, and the degree of paral-
lelism on Exchange (ID=6) was 1.
10-58 Informix Red Brick Decision Server Administrator’s Guide

TARGETjoin Query Processing
TARGETjoin Query Processing
Red Brick Decision Server includes a family of join methods, one of which is
the TARGETjoin bit-mapped join. TARGETjoin processing works on star
schemas or any schema that has primary key/foreign key relationships and
is a join method complementary to STARjoin technology. It uses TARGET
indexes on the foreign keys of a fact table (B-TREE indexes on multi-column
foreign keys) to join the table to the tables referenced by the foreign keys. This
section explains how TARGETjoin processing works and provides infor-
mation on how to use and administer a database to take advantage of this join
method. The following topics are included:

■ How to Use TARGETjoin Processing

■ When to Use TARGETjoin Processing

■ Examples

■ Reading EXPLAIN Output for a TARGETjoin Query

■ Summary and Recommendations

How to Use TARGETjoin Processing
This section explains how to enable TARGETjoin processing and under what
conditions Red Brick Decision Server uses TARGETjoin processing to run a
query.

Create TARGET or B-TREE Indexes on Foreign Keys of Fact Table

To enable TARGETjoin processing, you create indexes (TARGET or B-TREE) on
the foreign keys of the fact table. For single-column foreign keys, create
TARGET indexes on the foreign key column. For multi-column foreign keys,
create B-TREE indexes on the concatenation of the foreign key columns. The
reason for creating B-TREE indexes on multi-column foreign keys is that
TARGET indexes are single-column indexes and therefore cannot be created
on a multi-column foreign key. After you create the indexes and run queries,
TARGETjoin processing is selected automatically when it is the best choice.
Tuning a Warehouse for Performance 10-59

How to Use TARGETjoin Processing
For the purpose of describing the TARGETjoin functionality, consider a fact
table to be any table that references other tables by foreign key references.
This includes fact tables in a simple star schema that reference dimension
tables by foreign key references, and it also includes dimension tables that
reference outboard tables by foreign key references.

Rules for TARGETjoin Query Processing

To understand how Red Brick Decision Server chooses whether to use
TARGETjoin processing, consider the following cases:

■ One or more STAR index is present.

■ No STAR index is present.

When the Fact Table Has at Least One STAR Index

If at least one STAR index covering any of the keys is constrained in a query,
a TARGETjoin query plan is generated based on the STARjoin query plan if the
following conditions are satisfied:

■ At least one STAR index exists covering some or all of the constrained
keys of the query.

■ TARGET or B-TREE indexes exist on all the single-column fact table
foreign keys that are both constrained in the query and keys of the
qualifying STAR index(es).

■ B-TREE indexes exist on all the multi-column fact table foreign keys
that are both constrained in the query and keys of the qualifying
STAR index(es).

If these conditions are not satisfied, a query cannot use TARGETjoin
processing, but the query completes using another join method. When these
conditions are satisfied, the optimizer considers both STARjoin and
TARGETjoin processing and automatically chooses the best index and join
method for each query.
10-60 Informix Red Brick Decision Server Administrator’s Guide

How to Use TARGETjoin Processing
When the Fact Table Has No Qualifying STAR Indexes

If no STAR index covering the keys is constrained in a query, a TARGETjoin
query plan is generated when the following conditions are satisfied:

■ No STAR index exists covering any of the constrained keys of the
query.

■ The query joins two or more dimension tables to the fact table.

■ At least two of the constrained dimensions have TARGET indexes on
the corresponding fact table foreign keys (B-TREE index on multi-
column foreign keys).

Important: Dimensions that reference a single-column foreign key must have a
TARGET index on that foreign key, or they are not considered for a TARGETjoin query
plan, even if a B-TREE index exists on the foreign key.

If these conditions are not satisfied, the query uses another join method.
When these conditions are satisfied, the query plan generated does not
include STARjoin as a possible join method. It includes a choice of a table scan
or TARGETjoin processing. You can use the EXPLAIN command to see
whether TARGETjoin processing is an option for a particular query. For
examples of EXPLAIN output that show TARGETjoin query plans, refer to
“Reading EXPLAIN Output for a TARGETjoin Query” on page 10-67.

Turning Off TARGETjoin Query Processing

If you do not want query plans generated that include TARGETjoin
processing, make sure either that no indexes exist on the foreign key columns
of the fact table(s) or that the segments containing the indexes are in the
OFFLINE state. You can drop the indexes with the DROP INDEX statement or
you can bring the indexes to the OFFLINE state with the ALTER
SEGMENT...OFFLINE statement. For information on these statements, refer to
the SQL Reference Guide.
Tuning a Warehouse for Performance 10-61

When to Use TARGETjoin Processing
When to Use TARGETjoin Processing
When deciding whether to use TARGETjoin processing, consider the
following questions:

■ Do your queries perform well already?

■ Is your schema appropriate for TARGETjoin processing?

■ What are the trade-offs between creating more STAR indexes and
creating indexes on the foreign key columns?

Evaluate Query Performance

If your query performance is already good, do not create the indexes to
enable TARGETjoin processing. The sole purpose is to speed the performance
of queries, and if that performance is already good, there is no reason to incur
the administrative cost of creating and maintaining more indexes.

Often, however, the question, “Is performance good?” is not so easily
answered. Do all queries need to complete in less than 10 seconds, or can
some take 10 minutes? Is it acceptable for some queries that are not issued
often to take several hours?

Only you and your user community can answer these questions. The users
always appreciate faster queries. But is absolute performance more
important than longer downtime during database maintenance, for
example? Evaluate your query performance and decide whether the costs of
creating the indexes to enable TARGETjoin processing are worth the benefits.

For more information about the costs associated with TARGETjoin
processing, refer to “Administration Considerations for TARGETjoin
Processing” on page 4-14.
10-62 Informix Red Brick Decision Server Administrator’s Guide

When to Use TARGETjoin Processing
Schema Types

TARGETjoin processing joins tables that have primary key/foreign key
relationships. These relationships occur in a wide variety of schemas, most
notably in star schemas. But many star schemas expand on the simple star
schema and have outboard tables. Such schemas are sometimes referred to as
“snowflake” schemas. The following figure shows such a schema.

With a snowflake schema, TARGETjoin processing is possible to join the
dimension tables to the fact table and to join the outboard tables to the
dimension tables that reference them. To enable TARGETjoin processing in the
preceding figure, you must create TARGET indexes on the foreign key
columns of the Fact table and on the foreign key columns of the Dimension 2
table.

Figure 10-5
Snowflake Schema

Fact Table

Dimension 1

Dimension 2

Dimension 3

Outboard 2

Outboard 1
Tuning a Warehouse for Performance 10-63

Examples
Many STAR Indexes Versus TARGETjoin Processing

Creating foreign key indexes to enable TARGETjoin processing is an alter-
native to creating many STAR indexes. For schemas with many dimensions,
there are fewer TARGET indexes to create than there are potential STAR
indexes. For example, a schema with one fact table and ten dimension tables
has ten factorial (10!) or 3,628,800 possible STAR indexes. The same schema
has ten possible foreign key indexes.

When the number of dimensions in a schema is relatively small, the number
of potential STAR indexes is much lower, and it is much easier to create a set
of STAR indexes that perform well for a large variety of queries. For example,
on a schema with one fact table and four dimension tables, two or three
STAR indexes can provide excellent performance for virtually any query
against the database. As the number of dimensions increases, however, it
becomes more difficult to cover a large variety of queries with a relatively
small number of STAR indexes.

If you know exactly what queries will be run against the database, you can
always create STAR indexes that are well suited for those queries. As the
number of STAR indexes grows, however, this becomes more and more
impractical. Exactly what “large” is depends on what is practical in your
unique situation. A good compromise between ultimate performance and
manageability is to create a few STAR indexes and to also create foreign key
indexes to enable TARGETjoin processing. This will provide excellent perfor-
mance on some queries and good performance on all queries.

Examples
The examples in this section are based on a modified version of the Aroma
database, the sample database shipped with Red Brick Decision Server. To
create this database, create indexes on the foreign keys of the Sales table of
the Aroma database using the following CREATE INDEX statements:

create target index sales_perkey_target_idx on sales
(perkey);
create target index sales_promokey_target_idx on sales(promo
key);
create target index sales_storekey_small_target_idx

on sales (storekey) domain small;
create index sales_classkey_prodkey_btree_idx

on sales (classkey, prodkey);
10-64 Informix Red Brick Decision Server Administrator’s Guide

Examples
Tip: The TARGET index on the foreign key that references the Store table is created
as DOMAIN SMALL because there are only 18 unique values. The index on the
foreign key that references the Product table is a B-TREE index because it is a multi-
column foreign key.

Query That Chooses TARGETjoin

Suppose you want to answer the following business questions:

■ What are the dollar values of the sales on each promotion of type 900
in Atlanta?

■ What are the total sales for each promotion and for all the promo-
tions of type 900 in Atlanta?

The following query against the modified Aroma database answers this
question and is executed using TARGETjoin processing:

RISQL> set stats info;
RISQL> select substr(promo_desc, 1, 20) as PROMO_DESC,
> substr(store_name, 1, 25) as STORE_NAME, dollars
> from sales natural join store natural join promotion
> where city like ’Atlanta%’ and promo_type = 900
> order by 1
> break by 1 summing 3
> ;
** STATISTICS ** (500) Compilation = 00:00:00.41 cp time,
00:00:00.20 time, Logical IO count=77
PROMO_DESC STORE_NAME DOLLARS
Christmas special Olympic Coffee Company 210.00
Christmas special NULL 210.00
Easter special Olympic Coffee Company 420.00
Easter special Olympic Coffee Company 30.00
Easter special Olympic Coffee Company 150.00
Easter special NULL 600.00
NULL NULL 810.00
** STATISTICS ** (1457) EXCHANGE (ID: 19) Parallelism over 1
times High: 4 Low: 4 Average: 4.
** STATISTICS ** (1457) EXCHANGE (ID: 26) Parallelism over 1
times High: 1 Low: 1 Average: 1.
** STATISTICS ** (1458) CHOOSE PLAN (ID: 3) Choice: 3 was
chosen 1 times.
** STATISTICS ** (1461) CHOOSE PLAN (ID: 3) TARGETjoin was
done 1 times.
** STATISTICS ** (500) Time = 00:00:00.20 cp time, 00:00:00.74
time, Logical IO count=348
** INFORMATION ** (256) 7 rows returned.
RISQL>
Tuning a Warehouse for Performance 10-65

Examples
This query constrains on the Store table (city like ’Atlanta%’) and on the
Promotion table (promo_type = 900). These two tables are referenced by
foreign keys from the Sales table. The STAR index on the Sales table was
created with the following CREATE INDEX statement:

create star index sales_star_idx
on sales (sales_date_fkc, sales_product_fkc,

sales_store_fkc, sales_promo_fkc);

Notice the order of the keys in the STAR index. The foreign key constraints
that reference the Store and Promotion tables are the last two keys of this
index. A STARjoin query performs best when the leading keys of the index are
constrained in the query. Adding a constraint on the Period table to the
previous query causes it to use STARjoin processing to join the tables, as
follows:

RISQL> set stats info;
RISQL> select substr(promo_desc, 1, 20) as PROMO_DESC,
> substr(store_name, 1, 25) as STORE_NAME, dollars
> from sales natural join store natural join promotion natural
join period
> where city like ’Atlanta%’
> and promo_type = 900
> and year = 1999
> order by 1
> break by 1 summing 3
> ;
** STATISTICS ** (500) Compilation = 00:00:00.17 cp time,
00:00:00.31 time, Logical IO count=135
PROMO_DESC STORE_NAME DOLLARS
Easter special Olympic Coffee Company 30.00
Easter special Olympic Coffee Company 150.00
Easter special NULL 180.00
NULL NULL 180.00
** STATISTICS ** (1457) EXCHANGE (ID: 10) Parallelism over 1
times High: 3 Low: 3 Average: 3.
** STATISTICS ** (1457) EXCHANGE (ID: 14) Parallelism over 1
times High: 1 Low: 1 Average: 1.
** STATISTICS ** (1458) CHOOSE PLAN (ID: 3) Choice: 1 was
chosen 1 times.
** STATISTICS ** (1459) CHOOSE PLAN (ID: 3) STARjoin on 1
tables was done 1 times.
** STATISTICS ** (1460) CHOOSE PLAN (ID: 3) used Index
SALES_STAR_IDX of Table SALES 1 times for STARjoin.
** STATISTICS ** (500) Time = 00:00:02.08 cp time, 00:00:02.41
time, Logical IO count=318
** INFORMATION ** (256) 4 rows returned.
RISQL>
10-66 Informix Red Brick Decision Server Administrator’s Guide

Reading EXPLAIN Output for a TARGETjoin Query
This query chooses STARjoin processing instead of TARGETjoin processing
because it constrains on the Period table. The sales_date_fkc constraint from
the Period table is the leading key of the STAR index. Therefore, the STAR
index offers optimal performance in this case.

Reading EXPLAIN Output for a TARGETjoin Query
When TARGETjoin processing is a possible choice for a query execution path,
the Choose Plan operator in the EXPLAIN output shows as many as three
choices:

■ Table Scan (might include B-TREE 1-1 match, depending on the
indexes available)

■ STARjoin

■ TARGETjoin

The join method is chosen at runtime and can be displayed with the statistics
messages issued when SET STATS INFO is enabled.

STAR and TARGET Plan

The following example of the EXPLAIN output for a query has STARjoin
processing, table scan, and TARGETjoin processing as execution options. This
query is run against the modified Aroma database (with TARGET indexes).

RISQL> explain select count(*)
> from sales natural join period natural join store
> where year = 1999
> and store_name like ’C%’;

** STATISTICS ** (500) Compilation = 00:00:00.24 cp time,
00:00:00.23 time, Logical IO count=75
EXPLANATION
[
- EXECUTE (ID: 0) 5 Table locks (table, type): (PERIOD,
Read_Only), (STORE, Rea
d_Only), (SALES, Read_Only), (PRODUCT, Read_Only),
(PROMOTION, Read_Only)
--- CHOOSE PLAN (ID: 1) Num prelims: 2; Num choices: 3; Type:
StarJoin;

Tuning a Warehouse for Performance 10-67

Reading EXPLAIN Output for a TARGETjoin Query
 Prelim: 1; Choose Plan [id : 1] {
 BIT VECTOR SORT (ID: 2)
 -- TABLE SCAN (ID: 3) Table: PERIOD, Predicate:
(PERIOD.YEAR) = (1999)
 }

 Prelim: 2; Choose Plan [id : 1] {
 BIT VECTOR SORT (ID: 4)
 -- TABLE SCAN (ID: 5) Table: STORE, Predicate:
((STORE.STORE_NAME) =< (’Cÿ
ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ’)) && ((STORE.STORE_NAME) >=
(’C’))
 }

Choice: 1; Choose Plan [id : 1] {
 HASH AVL AGGR (ID: 6) Log Advisor Info: FALSE, Grouping:
FALSE, Distinct: FALSE;
 -- EXCHANGE (ID: 7) Exchange type: Functional Join
 ---- HASH AVL AGGR (ID: 8) Log Advisor Info: FALSE,
Grouping: FALSE, Distinct: FALSE;
 ------ EXCHANGE (ID: 9) Exchange type: STARjoin
 -------- STARJOIN (ID: 10) Join type: InnerJoin, Num
facts: 1, Num potential dimensions: 4, Fact Table: SALES,
Potential Indexes: SALES_STAR_IDX;
Dimension Table(s): PERIOD, PRODUCT, STORE, PROMOTION
}

 Choice: 2; Choose Plan [id : 1] {
 HASH AVL AGGR (ID: 11) Log Advisor Info: FALSE, Grouping:
FALSE, Distinct : FALSE;
 -- EXCHANGE (ID: 12) Exchange type: Table Scan
 ---- HASH AVL AGGR (ID: 13) Log Advisor Info: FALSE,
Grouping: FALSE, Distinct: FALSE;
 ------ FUNCTIONAL JOIN (ID: 14) 1 tables: PERIOD
 -------- BTREE 1-1 MATCH (ID: 15) Join type: InnerJoin;
Index(s): [Table: PERIOD, Index: PERIOD_PK_IDX]
 ---------- FUNCTIONAL JOIN (ID: 16) 1 tables: STORE
 ------------ BTREE 1-1 MATCH (ID: 17) Join type:
InnerJoin; Index(s): [Table: STORE, Index: STORE_PK_IDX]
 -------------- TABLE SCAN (ID: 18) Table: SALES,
Predicate: <none>
}

 Choice: 3; Choose Plan [id : 1] {
 HASH AVL AGGR (ID: 19) Log Advisor Info: FALSE, Grouping:
FALSE, Distinct: FALSE;
 -- EXCHANGE (ID: 20) Exchange type: Functional Join
 ---- HASH AVL AGGR (ID: 21) Log Advisor Info: FALSE,
10-68 Informix Red Brick Decision Server Administrator’s Guide

Reading EXPLAIN Output for a TARGETjoin Query
 Grouping: FALSE, Distinct: FALSE;
 ------ EXCHANGE (ID: 22) Exchange type: TARGETjoin
 -------- TARGET JOIN (ID: 23) Table: SALES, Predicate:
<none> ; Num indexes: 2 Index(s): Index:
SALES_PERKEY_TARGET_IDX ,Index:
SALES_STOREKEY_SMALL_TARGET_IDX
 ---------- FUNCTIONAL JOIN (ID: 24) 1 tables: PERIOD
 ------------ VIRTAB SCAN (ID: 25)
 ---------- FUNCTIONAL JOIN (ID: 26) 1 tables: STORE
 ------------ VIRTAB SCAN (ID: 27)
}

]
** STATISTICS ** (500) Time = 00:00:00.02 cp time, 00:00:00.10
time, Logical IO count=0
** INFORMATION ** (256) 60 rows returned.
RISQL>

There are three choices under the Choose Plan operator: STARjoin, Table Scan
with B-TREE 1-1 match, and TARGETjoin.

TARGET Only Plan

The following example illustrates the EXPLAIN output for a query that does
not have a STARjoin execution option. This is the same query as the previous
example, but this query is run against an Aroma database with TARGET
indexes on the Sales table foreign keys and no STAR indexes.

Informix does not recommend dropping your STAR indexes when using
TARGETjoin processing. This example illustrates only what the EXPLAIN
output looks like in situations where there are no STAR indexes.

RISQL> explain select count(*)
> from sales natural join period natural join store
> where year = 1999
> and store_name like ’C%’;
** STATISTICS ** (500) Compilation = 00:00:00.23 cp time,
00:00:00.23 time, Logical IO count=75
EXPLANATION
[
- EXECUTE (ID: 0) 5 Table locks (table, type): (PERIOD,
Read_Only), (STORE, Read_Only), (SALES, Read_Only), (PRODUCT,
Read_Only), (PROMOTION, Read_Only)
--- CHOOSE PLAN (ID: 1) Num prelims: 2; Num choices: 3; Type:
StarJoin;

Tuning a Warehouse for Performance 10-69

Reading EXPLAIN Output for a TARGETjoin Query
 Prelim: 1; Choose Plan [id : 1] {
 BIT VECTOR SORT (ID: 2)
 -- TABLE SCAN (ID: 3) Table: PERIOD, Predicate:
(PERIOD.YEAR) = (1999)
 }

 Prelim: 2; Choose Plan [id : 1] {
 BIT VECTOR SORT (ID: 4)
 -- TABLE SCAN (ID: 5) Table: STORE, Predicate:
((STORE.STORE_NAME) =< (’Cÿ ÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿÿ’))
&& ((STORE.STORE_NAME) >= (’C’))
 }

Choice: 1; Choose Plan [id : 1] {
 HASH AVL AGGR (ID: 6) Log Advisor Info: FALSE, Grouping:
FALSE, Distinct: FALSE;
 -- EXCHANGE (ID: 7) Exchange type: Functional Join
 ---- HASH AVL AGGR (ID: 8) Log Advisor Info: FALSE,
Grouping: FALSE, Distinct: FALSE;
 ------ EXCHANGE (ID: 9) Exchange type: STARjoin
 -------- STARJOIN (ID: 10) Join type: InnerJoin, Num
facts: 1, Num potential dimensions: 4, Fact Table: SALES,
Potential Indexes: SALES_STAR_IDX;
Dimension Table(s): PERIOD, PRODUCT, STORE, PROMOTION
}

 Choice: 2; Choose Plan [id : 1] {
 HASH AVL AGGR (ID: 11) Log Advisor Info: FALSE, Grouping:
FALSE, Distinct : FALSE;
 -- EXCHANGE (ID: 12) Exchange type: Table Scan
 ---- HASH AVL AGGR (ID: 13) Log Advisor Info: FALSE,
Grouping: FALSE, Distinct: FALSE;
 ------ FUNCTIONAL JOIN (ID: 14) 1 tables: PERIOD
 -------- BTREE 1-1 MATCH (ID: 15) Join type: InnerJoin;
Index(s): [Table: PERIOD, Index: PERIOD_PK_IDX]
 ---------- FUNCTIONAL JOIN (ID: 16) 1 tables: STORE
 ------------ BTREE 1-1 MATCH (ID: 17) Join type:
InnerJoin; Index(s): [Table: STORE, Index: STORE_PK_IDX]
 -------------- TABLE SCAN (ID: 18) Table: SALES,
Predicate: <none>
}

 Choice: 3; Choose Plan [id : 1] {
 HASH AVL AGGR (ID: 19) Log Advisor Info: FALSE, Grouping:
FALSE, Distinct : FALSE;
 -- EXCHANGE (ID: 20) Exchange type: Functional Join
 ---- HASH AVL AGGR (ID: 21) Log Advisor Info: FALSE,
10-70 Informix Red Brick Decision Server Administrator’s Guide

Reading EXPLAIN Output for a TARGETjoin Query
Grouping: FALSE, Distinct: FALSE;
 ------ EXCHANGE (ID: 22) Exchange type: TARGETjoin
 -------- TARGET JOIN (ID: 23) Table: SALES, Predicate:
<none> ; Num indexes: 2 Index(s): Index:
SALES_PERKEY_TARGET_IDX ,Index:
SALES_STOREKEY_SMALL_TARGET_IDX
 ---------- FUNCTIONAL JOIN (ID: 24) 1 tables: PERIOD
 ------------ VIRTAB SCAN (ID: 25)
 ---------- FUNCTIONAL JOIN (ID: 26) 1 tables: STORE
 ------------ VIRTAB SCAN (ID: 27)
}

]
** STATISTICS ** (500) Time = 00:00:00.04 cp time, 00:00:00.09
time, Logical IO count=0
** INFORMATION ** (256) 60 rows returned.
RISQL>

This query has two choices of join methods: table scan and TARGETjoin. If
you run this query with SET STATS INFO enabled, you can see that it runs
using TARGETjoin, which is Choice 2 in the EXPLAIN output.

RISQL> select count(*)
> from sales natural join period natural join store
> where year = 1999
> and store_name like ’C%’;
** STATISTICS ** (500) Compilation = 00:00:00.40 cp time,
00:00:00.40 time, Logical IO count=75

 4561
** STATISTICS ** (1457) EXCHANGE (ID: 7) Parallelism over 1
times High: 4 Low: 4 Average: 4.
** STATISTICS ** (1457) EXCHANGE (ID: 9) Parallelism over 1
times High: 1 Low: 1 Average: 1.
** STATISTICS ** (1458) CHOOSE PLAN (ID: 1) Choice: 1 was
chosen 1 times.
** STATISTICS ** (1459) CHOOSE PLAN (ID: 1) STARjoin on 1
tables was done 1 times.
** STATISTICS ** (1460) CHOOSE PLAN (ID: 1) used Index
SALES_STAR_IDX of Table SALES 1 times for STARjoin.
** STATISTICS ** (500) Time = 00:00:03.86 cp time, 00:00:04.15
time, Logical IO count=194
** INFORMATION ** (256) 1 rows returned.
RISQL>

To learn which TARGET index(es) were used in the query, see the names of the
indexes in the EXPLAIN output of the query, shown in the previous example.
Tuning a Warehouse for Performance 10-71

Summary and Recommendations
Summary and Recommendations
TARGETjoin processing is a complementary technology to STARjoin
processing. It works well when an optimal STAR index is not available. The
following diagram shows a schema that is an ideal candidate for TARGETjoin
processing to complement STARjoin processing.

Figure 10-6
Schema Candidate

for TARGETjoin
Processing

Fact Table

Dimension 1

Dimension 2

Dimension 3

Dimension 4

Dimension 5

Dimension 10

Dimension 9

Dimension 8

Dimension 7

Dimension 6
10-72 Informix Red Brick Decision Server Administrator’s Guide

Summary and Recommendations
This simple star schema has a single fact table and ten dimension tables refer-
enced by foreign key/primary key relationships.

Such a schema can be found in a large variety of applications. For example, it
could be a retail schema where the fact table is a Sales table with dimensions
such as Period, Product, Market, Customer, and so on. It could also be a
health insurance claims database where the fact table is a Claims table with
dimensions such as Member, Provider, Occupation, Physician, and so on.

With this type of schema—one with a large number of dimension tables—
you might need to create many STAR indexes in order for STARjoin processing
to work well over a large variety of ad-hoc queries.

With TARGETjoin processing, instead of creating many STAR indexes, you can
create one or two STAR indexes and then create TARGET indexes on the
foreign keys of the fact table.

Indexes to Create

For this example, assume you know that about 70 percent of your queries
constrain on dimensions 1 through 4, and the rest are ad-hoc queries that
constrain on different combinations of all ten dimensions. In this case, a good
strategy is to create the following indexes:

■ One STAR index covering all of the dimensions, with the leading key
the one the fact table is segmented on (for example, the time
dimension).

■ A second STAR index covering dimensions 1 through 4, which are
used in 70 percent of your queries. You might also want the leading
key of this STAR index to be the time dimension, or whatever
dimension the fact table is segmented on.

■ Ten TARGET indexes, one on each of the fact table foreign keys.

The STAR index that covers all of the dimension table keys has two main
purposes:

■ It provides good query performance over a large variety of queries.

■ It enables STARjoin/TARGETjoin query plans to be generated for any
query against this database, as described in “When the Fact Table
Has at Least One STAR Index” on page 10-60.
Tuning a Warehouse for Performance 10-73

Summary and Recommendations
This strategy gives optimal performance on the core 70 percent queries, and
it also gives good performance on virtually any ad-hoc query that users
might make.

Large Dimension Table

Suppose further that Dimension 10 is a large table named Customer with
1,000,000 rows. In this situation, TARGETjoin processing might not offer the
best performance on queries that loosely constrain on the large Customer
table. But these queries should perform well with STARjoin processing,
particularly if the Customer dimension is the last key in the STAR index and
other keys in that STAR index are constrained as well. Therefore, the
Customer table (or whatever your large table is) should be the last key in the
STAR index that covers all your dimensions.

Experiment

All schemas and data are different. It is not possible to know exactly what the
best index implementation is without some experimentation and evaluation
of your query performance. If query performance is already good with one
or two STAR indexes, you probably do not need to add any additional
indexes.

This example is a simplified case. Your situation obviously is different. But if
you refer to these examples as guidelines and if your schema is a good
candidate for TARGETjoin processing, it will complement the STARjoin
processing that works well in 70 percent queries and greatly improve perfor-
mance for your database server.
10-74 Informix Red Brick Decision Server Administrator’s Guide

Using Synonyms to Control Fact-to-Fact Joins
Using Synonyms to Control Fact-to-Fact Joins
You can use synonyms to perform a hash join or a B-TREE 1-1 match join on
queries that would normally use STARjoin processing. This is particularly
useful with fact-to-fact joins in complex schemas when the fact-to-fact
STARjoin operation is not performing well.

To use STARjoin processing on a multiple fact table join, each fact table must
have at least one foreign key reference to a common dimension. Additionally,
the fact tables must have STAR indexes whose shared foreign keys are in the
same relative order.

In the multiple fact table schema in the preceding figure, assume indexes
exist with the following definitions:

create star index STAR_FACT1
on fact1(CommonDimensionKey, DimAKey) ;

create star index STAR_FACT2
on fact2(CommonDimensionKey, DimBKey) ;

Figure 10-7
Multiple Fact Table

Join
......

...

...

...

...

Synonym_of
CommonDimension

CommonDimension

DimA DimB

Fact1 Fact2
Tuning a Warehouse for Performance 10-75

Using Synonyms to Control Fact-to-Fact Joins
The following query uses the STAR indexes for the fact-to-fact join operation:

select dimA.column, fact1.column, fact2.column, dimB.column
from dimA, fact1, CommonDimension, fact2, dimB
where DimA.column = <value1>

and DimB.column = <value2>
and DimA.DimAKey = fact1.DimAKey
and fact1.CommonDimensionKey =

CommonDimension.CommonDimensionKey
and fact2.CommonDimensionKey =

CommonDimension.CommonDimensionKey
and fact2.DimBKey = DimB.DimBKey ;

If this fact-to-fact STARjoin query is not performing well, you can use the
ALTER TABLE...ALTER CONSTRAINT statement to move a foreign key
constraint to reference a synonym instead of the base table to which the
synonym refers. Any STAR indexes that reference the base table are not
considered in the query plan when the synonym (instead of the base table) is
specified in the query. Also, any STAR indexes that reference the synonym are
not considered when the base table is specified in the query. This allows Red
Brick Decision Server to consider a different set of indexes depending on
whether the base table or the synonym is included in the query.

The following ALTER TABLE...ALTER CONSTRAINT statement changes the
constraint on one of the fact tables to reference the synonym instead of the
CommonDimension table:

alter table fact1 alter constraint col1
references synonym_of_commondimension;

The foreign key constraint from table Fact1 now points to the synonym
instead the CommonDimension table, as shown in the following figure.
10-76 Informix Red Brick Decision Server Administrator’s Guide

Using Synonyms to Control Fact-to-Fact Joins
Now if you specify the synonym instead of the CommonDimension table in
your query, a fact-to-fact STARjoin does not occur.

select dimA.column, fact1.column, fact2.column, dimB.column
from dimA, fact1, Synonym_of_CommonDimension, fact2, dimB
where DimA.column = <value1>

and DimB.column = <value2>
and DimA.DimAKey = fact1.DimAKey
and fact1.CommonDimensionKey =

Synonym_of_CommonDimension.CommonDimensionKey
and fact2.CommonDimensionKey =

Synonym_of_CommonDimension.CommonDimensionKey
and fact2.DimBKey = DimB.DimBKey ;

This query uses a HASH join to join to the results of two single-fact table
STARjoin operations instead of the multiple fact table STARjoin. For some
queries, this might improve performance. However, performance depends
on many factors, including schema definition, available indexes, how tightly
constrained the query is, uniformity of the data, and so on. The use of
synonyms provides an additional tuning tool for multiple fact table joins, but
a certain amount of experimentation is required to ascertain whether it will
enhance performance on your database.

Tip: The synonym and the base table share the same physical data. They only differ
logically. Query results are the same selecting from a synonym or from the table to
which the synonym refers.

For the syntax of the ALTER TABLE and CREATE SYNONYM statements, refer
to the SQL Reference Guide.

Figure 10-8
Multiple Fact Table

Join Using
Synonym Table......

...

...

...

...

Synonym_of
CommonDimension

CommonDimension

DimA DimB

Fact1 Fact2
Tuning a Warehouse for Performance 10-77

Making SQL-Based Improvements
Making SQL-Based Improvements
In some cases, changing the way queries are constructed results in improved
performance. Determining when and how to make these changes requires an
in-depth knowledge of SQL, but the following examples provide some
limited suggestions. You can also find some ideas about alternative methods
of accomplishing tasks in the SQL Self-Study Guide and the SQL Reference
Guide.

UNION Versus Interdimensional ORs
A query that uses the union of two or more queries can potentially run faster
than a query that constrains the referenced (dimension) tables with an OR
operator. The results returned are the same.

Example

The following SQL fragments illustrate a case where performance can be
improved by splitting a query with OR constraints on referenced tables into
two queries whose results are combined with a UNION operation. Tables T2
and T3 are independent referenced tables and reflect different dimensions of
the data. That is, the two tables do not reference each other.

Subquery in the FROM Clause Versus Correlated Subquery
A query that uses a subquery in the FROM clause often runs faster than an
equivalent query (a query that answers the same question and returns the
same results) with a correlated subquery in the SELECT list. Therefore, re-
writing a correlated subquery as a subquery in the FROM clause might
provide a substantial performance improvement.

Interdimensional OR:

select ... from t1,t2,t3
where t2.col1 = ’x’

or
t3.col1 = ’y’

 UNION:

select ... from t1, t2
where t2.col1 = ’x’

union
select ... from t1, t3

where t3.col1 = ’y’
10-78 Informix Red Brick Decision Server Administrator’s Guide

Subquery in the FROM Clause Versus Correlated Subquery
Example

The following query, from the Aroma database, contains a correlated
subquery in the select list:

RISQL> select outer_product.prod_name as aroma_product,
sum(outer_sales.dollars) as dollars_jan_98,
(select sum(inner_sales.dollars)

from sales as inner_sales, product as
inner_product,

period as inner_period
where inner_sales.prodkey = inner_product.prodkey

and inner_sales.classkey =
inner_product.classkey

and inner_sales.perkey = inner_period.perkey
and inner_period.year = outer_period.year + 1
and inner_period.month = outer_period.month
and inner_product.prod_name =

outer_product.prod_name
and inner_product.pkg_type like ’No pkg%’
) as dollars_jan_99

from sales as outer_sales, product as outer_product,
period as outer_period

where outer_sales.prodkey = outer_product.prodkey
and outer_sales.classkey = outer_product.classkey
and outer_sales.perkey = outer_period.perkey
and outer_period.year = 1998
and outer_period.month = ’JAN’
and outer_product.pkg_type like ’No pkg%’

group by outer_product.prod_name, outer_period.year,
outer_period.month

order by outer_product.prod_name;
AROMA_PRODUCT DOLLARS_JAN_98 DOLLARS_JAN_99
Aroma Roma 10460.75 15055.00
Aroma baseball cap 1113.00 1049.40
...

** STATISTICS ** (500) Time = 00:00:06.44 cp time, 00:00:06.25
time, Logical IO count=4445
** INFORMATION ** (256) 25 rows returned.
RISQL>

The following query, from the Aroma database, uses a subquery in the FROM
clause:

RISQL> select aroma_product, dollars_jan_98, dollars_jan_99
from

(select product.prod_name, sum(dollars)
from sales, product, period
where sales.prodkey = product.prodkey

and sales.classkey = product.classkey
and sales.perkey = period.perkey
and period.year = 1998
Tuning a Warehouse for Performance 10-79

Subquery in the FROM Clause Versus Correlated Subquery
and period.month = ’JAN’
and product.pkg_type like ’No pkg%’

group by product.prod_name, period.year,
period.month)

as sales_alias1 (aroma_product,
dollars_jan_98)

natural join
(select product.prod_name, sum(dollars)

from sales, product, period
where sales.prodkey = product.prodkey

and sales.classkey = product.classkey
and sales.perkey = period.perkey
and period.year = 1999
and period.month = ’JAN’
and product.pkg_type like ’No pkg%’

group by product.prod_name, period.year,
period.month)

as sales_alias2 (aroma_product,
dollars_jan_99)

order by aroma_product;
AROMA_PRODUCT DOLLARS_JAN_98 DOLLARS_JAN_99
Aroma Roma 10460.75 15055.00
Aroma baseball cap 1113.00 1049.40
...

** STATISTICS ** (500) Time = 00:00:03.30 cp time, 00:00:03.87
time, Logical IO count=380
** INFORMATION ** (256) 25 rows returned.

This query completes in 3.87 seconds, while the previous query (with the
correlated subquery) completes in 6.25 seconds. Both queries return the same
results. The actual difference in the response time of a correlated subquery
versus a subquery in the FROM clause will differ depending on the query, the
data, and other system-dependent factors.

Tip: Actual query response times vary from system to system.
10-80 Informix Red Brick Decision Server Administrator’s Guide

11
Chapter
Tuning a Warehouse for Parallel
Query Processing
In This Chapter . 11-3

Parallel Query Tuning Parameters 11-4

Enabling Parallel Query Processing 11-5

Limiting I/O Contention with the FILE_GROUP Parameter. 11-6

Allowing Parallelism Within Disk Groups with the
GROUP Parameter 11-8

Limiting Available Tasks 11-10
TOTALQUERYPROCS 11-10
QUERYPROCS 11-11

Setting Minimum Row Requirements with ROWS_PER_TASK
Parameters 11-13

ROWS_PER_SCAN_TASK 11-14
ROWS_PER_FETCH_TASK and

ROWS_PER_JOIN_TASK 11-17
Estimated Rows 11-18
Number of Tasks 11-18
Enabling Parallelism for a STARjoin 11-18
Number of Rows in Dimension Tables 11-19

Forcing the Number of Parallel Tasks with the FORCE_TASKS
Parameters 11-25

FORCE_SCAN_TASKS 11-28
FORCE_FETCH_TASKS and FORCE_JOIN_TASKS 11-29
FORCE_HASHJOIN_TASKS 11-32

11-2 Inf
Enabling Partitioned Parallelism for Aggregation 11-33

System Considerations for Parallel Tasks 11-35

Analysis of System Resources and Workload 11-36
Disk Usage . 11-37

For Data . 11-37
For STAR Indexes. 11-38

Memory Usage 11-38
CPU Allocation 11-39

Tuning for Specific Query Types 11-41
Parallel STARjoin Queries 11-41

Density . 11-41
Number of Parallel Tasks 11-42
Mix of Parallel Tasks and File Groups 11-42
Considerations for Multiuser Environments 11-43

Parallel Table Scans 11-44
SuperScan Technology 11-44
About Reasonable Values 11-45

Basic Guidelines . 11-45
ormix Red Brick Decision Server Administrator’s Guide

In This Chapter
Query performance can be improved by using multiple tasks to process
queries against large tables. Because multiple tasks consume more system
resources—CPU, disk, processes, and memory—than a single task, several
parameters in the rbw.config file allow you to control the amount of parallel
processing, balancing query response time against the available system
resources and demands of other users. Queries that involve a relation scan of
a large table or a STAR index are candidates for parallel processing.

This chapter describes query performance improvements that can be
achieved by parallel query processing. This chapter is organized as follows:

■ Parallel Query Tuning Parameters

■ Enabling Parallel Query Processing

■ Limiting I/O Contention with the FILE_GROUP Parameter

■ Allowing Parallelism Within Disk Groups with the GROUP
Parameter

■ Limiting Available Tasks

■ Setting Minimum Row Requirements with ROWS_PER_TASK
Parameters

■ Forcing the Number of Parallel Tasks with the FORCE_TASKS
Parameters

■ Enabling Partitioned Parallelism for Aggregation

■ System Considerations for Parallel Tasks

■ Analysis of System Resources and Workload

■ Tuning for Specific Query Types

■ Basic Guidelines
Tuning a Warehouse for Parallel Query Processing 11-3

Parallel Query Tuning Parameters
Parallel Query Tuning Parameters
The extent to which parallel query processing is used is based on the tuning
parameters listed in the following table. After these parameters are set, paral-
lelism on demand is enabled whenever the specified conditions are met.
Without any further tuning, the end user will benefit from parallel
processing.

Parameter Function

TUNE FILE_GROUP Reduces seek contention on disk devices.

TUNE GROUP Sets number of parallel tasks per file group
(disk group).

TUNE TOTALQUERYPROCS Sets maximum number of tasks available for
parallel query processing at one time by all server
processes.

TUNE QUERYPROCS * Sets maximum number of tasks available at one
time for parallel query processing by a single
server process.

TUNE ROWS_PER_SCAN_TASK * Limits number of parallel tasks applied to a query
that performs a relation scan (that is, does not use
an index).

TUNE ROWS_PER_JOIN_TASK * Limits number of parallel tasks applied to the
index-probing portion of a query.

TUNE ROWS_PER_FETCH_TASK * Limits number of parallel tasks applied to the
row-data-fetching phase of a query.

TUNE FORCE_FETCH_TASKS * Sets the number of parallel tasks for fetching rows
in queries that use a STAR index.

TUNE FORCE_JOIN_TASKS * Sets the number of parallel tasks for joining tables
in queries that use a STAR index.

TUNE FORCE_SCAN_TASKS * Sets the number of parallel tasks for relation scans
of tables.

* These parameters can also be set with a SET command entered anywhere SQL statements can be entered.

 (1 of 2)
11-4 Informix Red Brick Decision Server Administrator’s Guide

Enabling Parallel Query Processing
Enabling Parallel Query Processing
To enable parallel processing, you must set the QUERYPROCS and
TOTALQUERYPROCS parameters in the configuration file (rbw.config) to a
value greater than zero.

You can control the extent of parallelism for query processing in either of two
ways:

■ Specify the minimum number of rows you want a task to process
with the ROWS_PER_TASK parameters, which avoid the overhead of
parallel processing for trivial queries. These parameters are intended
to handle the general purpose day-to-day processing.

■ Specify the number of parallel tasks you want to use to process a
query, regardless of the number of rows per task, with the
FORCE_TASKS parameters. These parameters, which allow you more
control over CPU resources, are designed for use on specific queries
on which you want to specify the number of parallel tasks to be used
in order to get the query processed quickly, regardless of the
resources used. These parameters override the ROWS_PER_TASK
parameters.

All parameters can be entered as TUNE parameters in the rbw.config file so
that they affect all server sessions. The order of these parameters in the
rbw.config file is not significant. Alternatively, you can enter them as SQL SET
statements, in which case they affect the current session only.

TUNE FORCE_HASHJOIN_TASKS * Sets the number of parallel tasks for hybrid hash
joins.

TUNE FORCE_ AGGREGATION_TASKS * Sets the number of parallel tasks for partitioned
parallel aggregation.

TUNE PARTIONED_PARALLEL_AGGREGATION * Enables or disables parallelism for aggregation
operations.

Parameter Function

* These parameters can also be set with a SET command entered anywhere SQL statements can be entered.

 (2 of 2)
Tuning a Warehouse for Parallel Query Processing 11-5

Limiting I/O Contention with the FILE_GROUP Parameter
The parallel tuning parameters are discussed in detail in the following
sections.

Limiting I/O Contention with the FILE_GROUP
Parameter
The FILE_GROUP parameter definitions specify to the server what PSUs are
on the same disk in order to reduce seek contention on individual disk
devices. These groups of PSUs are referred to as disk groups. This parameter
limits the amount of parallelism. In general, at most one task is allocated per
disk group for each operation (such as a scan) unless the TUNE GROUP
parameter is used to specify that more than one task can be used for a specific
group.

Because of the SuperScan technology used for disk I/O, tasks from multiple
servers performing relation scans on tables can access the same data with a
single read operation, which can reduce seek contention across server
processes.

These entries are read at server startup, so changes are in effect for all sessions
started after a change to the rbw.config file.

Syntax

To specify disk groups, enter a line for each disk group in the rbw.config file
using the following syntax.

TUNE pathname_prefixFILE_GROUP disk_group_id

disk_group_id Identifier used to group files into the same disk group.
This variable must be an integer in the range of 1 to
32,767.

pathname_prefix Any string of characters delimited by white space or
end-of-line.
11-6 Informix Red Brick Decision Server Administrator’s Guide

Limiting I/O Contention with the FILE_GROUP Parameter
Usage Notes

To determine what group a file belongs to, the filename (as specified in
CREATE SEGMENT statements) is converted to an absolute filename (corre-
sponding on UNIX to either a link or an actual file). Then the longest
pathname prefix that is a left substring of the filename is located. The
disk_group_id value associated with this pathname prefix is the ID of the
group to which the file belongs.

If no matching pathname prefix exists for a particular filename, the file is
considered to be in its own private group with a limit of one task applied to
that group.

You can change this behavior by including an entry in the rbw.config file with
a pathname prefix of ’/’ and a unique disk group ID. This entry matches any
file not matched by any other entry. ♦

Any number of pathname prefixes can be mapped to the same disk group.
Each mapping requires a separate TUNE FILE_GROUP statement.

If multiple TUNE FILE_GROUP statements contain identical pathname
prefixes, the last such entry is used, and all others are discarded. With the
exception of duplicate elimination, the order of the entries has no impact.

If you want to allow more than one task per disk group, you can increase this
limit with the TUNE GROUP parameter.

Examples

A table has its data segmented as follows:

seg1 seg2 seg3

/disk1/psu11 /disk3/psu21 /disk4/psu31
/disk2/psu12 /disk4/psu22 /disk5/psu32

To reduce seek contention by placing PSUs on the same physical disk in the
same file group, enter the following lines in the rbw.config file:

TUNE FILE_GROUP 1 /disk1
TUNE FILE_GROUP 2 /disk2
TUNE FILE_GROUP 3 /disk3
TUNE FILE_GROUP 4 /disk4
TUNE FILE_GROUP 5 /disk5

UNIX

UNIX
Tuning a Warehouse for Parallel Query Processing 11-7

Allowing Parallelism Within Disk Groups with the GROUP Parameter
FILE_GROUP 4 contains both psu22 and psu31, which are on the same disk
(/disk4). Putting these PSUs in the same disk group prevents a query process
from assigning two processes to work simultaneously on the two PSUs. ♦

A table has its data segmented as follows:

seg1 seg2 seg3

f:\psu11 h:\psu21 i:\psu31
g:\psu12 i:\psu22 j:\psu32

To reduce seek contention by placing PSUs on the same physical disk in the
same file group, enter the following lines in the rbw.config file:

TUNE FILE_GROUP 1 f:\
TUNE FILE_GROUP 2 g:\
TUNE FILE_GROUP 3 h:\
TUNE FILE_GROUP 4 i:\
TUNE FILE_GROUP 5 j:\

FILE_GROUP 4 contains both psu22 and psu31, which are on the same disk (i).
Putting these PSUs in the same disk group prevents a query process from
assigning two tasks to work simultaneously on the two PSUs. ♦

Allowing Parallelism Within Disk Groups with the
GROUP Parameter
The GROUP parameter provides a way to allow some parallel processing to
occur within a disk group. In those cases where PSUs are striped across
multiple disks, such as disk arrays or multiple disks grouped together as
logical volumes, you can use this parameter to allow parallel processing for
a specific disk group.

Syntax

To specify parallelism for a disk group, enter a line for each disk group in the
rbw.config file using the following syntax.

WIN NT

TUNE num_tasksGROUP disk_group_id
11-8 Informix Red Brick Decision Server Administrator’s Guide

Allowing Parallelism Within Disk Groups with the GROUP Parameter
Usage Notes

Even though the FILE_GROUP parameter is designed specifically to limit I/O
contention within a specific disk group, multiple disks that are striped to
appear as one logical volume to the operating system can support more I/O
activity. You can increase parallel I/O activity to disk groups of this type
(RAID disks or striped logical volumes) with the GROUP parameter.

In cases where queries are CPU intensive rather than I/O bound and there is
excess CPU capacity, you can use the GROUP parameter to allow additional
parallelism to take advantage of all the CPU capacity.

Enter a separate GROUP parameter for each disk group you want to modify.

Example

Suppose in the example on page 11-7 that disk1 and disk2 on UNIX or f: and g:
on Windows NT are actually logical volumes that are striped across five
physical disks each. You could adjust the parallelism per disk group to
accommodate CPU-intensive queries that are heavily concentrated in seg1 by
entering the following lines in the rbw.config file:

TUNE GROUP 1 5
TUNE GROUP 2 5

Any query that accessed seg1 now could have as many as five I/O requests
outstanding against disk1 and disk2 on UNIX or f: and g: on Windows NT.

disk_group_id Identifier used to define a disk group with the FILE
GROUP parameter. This variable must be an integer value.

num_tasks Maximum number of outstanding tasks against the
specified disk group. If you do not specify a GROUP
parameter for a disk group, the default is one task at a
time for that disk group.
Tuning a Warehouse for Parallel Query Processing 11-9

Limiting Available Tasks
Limiting Available Tasks
You can control the number of tasks available for parallel query processing
and the allocation of those tasks in a multiuser environment. The parameter
TOTALQUERYPROCS specifies the maximum number of tasks available for
parallel queries at one time on all the servers controlled by a single daemon,
providing a mechanism to control the system load imposed by parallel
queries. The QUERYPROCS parameter specifies the maximum number of
concurrent parallel tasks to be used in processing a single query, providing a
mechanism to control the resources allocated to a single server (user).

The algorithm that allocates tasks to queries employs a “graceful decrease”
mechanism to ration remaining tasks when the demand is high. After 50
percent of the total tasks available for processing queries have been allocated,
subsequent queries are allocated fewer tasks per query.

Example

Assume TOTALQUERYPROCS is 1000, QUERYPROCS is 100, and 5 queries
have each been allocated 100 tasks so that 500 tasks out of the 1000 total tasks
have been allocated. In this case, a “graceful decrease” sets in, and subse-
quent queries each receive fewer than 100 tasks apiece (even if they request
100). Once the ratio of allocated tasks to total tasks drops below 50 percent,
queries again receive the requested number of tasks, up to the limit imposed
by the QUERYPROCS value.

TOTALQUERYPROCS
To specify a limit on the total number of tasks available for parallel queries to
all servers controlled by a single warehouse daemon, enter a line in the
rbw.config file using the following syntax.

TUNE max_parallel_tasksTOTALQUERYPROCS
11-10 Informix Red Brick Decision Server Administrator’s Guide

QUERYPROCS
QUERYPROCS
To specify a limit on the total number of parallel tasks available for a single
query for all sessions, enter a line in the rbw.config file using the following
syntax.

To specify a limit on the total number of parallel tasks available for a single
query for specific sessions, enter a SET command using the following syntax.

max_parallel_tasks A nonnegative integer in the range of 0 to 32,767. (A
value of 0 or 1 effectively disables parallel query
execution.)

The count specified by max_parallel_tasks does not
include tasks allocated to the base servers (the
number limited by the MAX_SERVERS parameter).
Changing this parameter might also require
operating-system parameters to be changed, as
described in the Installation and Configuration Guide.
Individual operating systems have limits or
operating-system parameters that limit the allowable
range of TOTALQUERYPROCS.

TUNE num_per_queryQUERYPROCS

SET num_per_queryQUERYPROCS ;
Tuning a Warehouse for Parallel Query Processing 11-11

Usage Notes for TOTALQUERYPROCS and QUERYPROCS
Usage Notes for TOTALQUERYPROCS and QUERYPROCS
If either the TOTALQUERYPROCS parameter or the QUERYPROCS parameter
is 0 or not present, no parallel processing is done.

If multiple TOTALQUERYPROCS or QUERYPROCS statements are present, the
last such entry is used, and all others are discarded. With the exception of
duplicate elimination, the order of the entries has no impact.

The TOTALQUERYPROCS entry in the rbw.config file is read at daemon startup,
so changes are not effective until the rbwapid daemon is restarted.

The QUERYPROCS entry in the rbw.config file is read at server startup, so
changes are not effective until a new server is started. If the SET command
attempts to set QUERYPROCS to a value greater than the value in the
rbw.config file, the value in the rbw.config file is used.

num_per_query A nonnegative integer in the range of 0 to 32,767. Speci-
fying a value of 0 effectively disables parallel query
processing. This number is an upper limit. Other factors
such as the ROWS_PER_TASK and FORCE_TASKS param-
eters and the TOTALQUERYPROCS parameter can also limit
the number of tasks available for a single query. The distri-
bution of data might also result in some tasks completing
before others, which might reduce the amount of paral-
lelism to less than expected.
11-12 Informix Red Brick Decision Server Administrator’s Guide

Setting Minimum Row Requirements with ROWS_PER_TASK Parameters
Setting Minimum Row Requirements with
ROWS_PER_TASK Parameters
You can use the ROWS_PER_TASK parameters to provide limits to the server
on when to run processes in parallel. If a small number of rows is involved,
the overhead of running the task in parallel might outweigh the benefit. You
can set a ROWS_PER_TASK limit to instruct the server not to start a parallel
task unless the ROWS_PER_TASK value is greater than x. The following three
parameters are used for different types of queries and at different points in
query processing:

■ The ROWS_PER_SCAN_TASK parameter sets a minimum on the
number of rows that the server expects to read in a relation scan
before the scan is performed in parallel. This number does not affect
queries that use an index, only those that perform a relation scan of
the table.

■ The ROWS_PER_FETCH_TASK parameter sets a minimum on the
number of rows the server estimates will be returned during the
fetch portion of a STARjoin before performing the tasks in parallel.

■ The ROWS_PER_JOIN_TASK parameter sets a minimum on the
number of index entries the server estimates will be returned during
the join processing (index-probing) portion of a STARjoin before
performing the tasks in parallel. The server enables parallelism for
both fetch and join tasks based on the number of join tasks it calcu-
lates, based on the equation in “Enabling Parallelism for a STARjoin”
on page 11-19.

These parameters can be set for all sessions with entries in the rbw.config file.
Changes are effective for server sessions started after the change is made. If
multiple values for a given parameter are specified in the configuration file,
the last entry of each type is used, and all others are discarded. The order of
the three ROWS_PER_TASK parameters has no impact. These parameters can
also be set for a specific session with a SET command.

The following sections describe how to select values for these parameters. In
general, the default values supplied with Red Brick Decision Server inhibit
parallelism. If you are not satisfied with the resource consumption or query
response time and feel that more or less parallelism would improve perfor-
mance, adjust the values accordingly.
Tuning a Warehouse for Parallel Query Processing 11-13

ROWS_PER_SCAN_TASK
ROWS_PER_SCAN_TASK
The ROWS_PER_SCAN_TASK parameter sets a limit on the number of parallel
tasks initiated for a relation scan by specifying a minimum number of rows
each scan task must return before it will run in parallel. This limit affects
queries that use no index but scan an entire table.

The server uses this parameter value as follows to determine the maximum
number of tasks to use for a query of this type:

1. Each disk group with at least the number of rows specified by
ROWS_PER_SCAN_TASK is assigned tasks based on the following
formula:

2. The number of rows in each disk group containing fewer than the
specified number of rows are added together. This total row number
is then divided by the number of rows specified by
ROWS_PER_SCAN_TASK to determine how many additional tasks to
allocate.

The number of rows (in a disk group) refers to the number of rows for which
space has been allocated in a PSU, and this number might exceed the number
of rows visible to a query. For example, space might be allocated for rows that
have since been deleted.

MIN rows_in_group
rows_per_task
-- max_tasks_per_group,











 Specified by
ROWS_PER_SCAN_TASK

Specified by GROUP or 1 if no
corresponding GROUP entry

Number of additional tasks total_rows
rows_per_task
--=

Specified by
ROWS_PER_SCAN_TASK
11-14 Informix Red Brick Decision Server Administrator’s Guide

ROWS_PER_SCAN_TASK
Syntax

To specify the value used for rows_per_task in the preceding equation for all
sessions, enter a line in the rbw.config file using the following syntax.

To specify the value used for rows_per_task in the preceding equation for
specific sessions, enter a SET command using the following syntax.

Example

Assume a table has space for 18,000,000 rows allocated across three segments,
and each segment contains two PSUs. Each PSU is in its own disk group. The
first PSU in each segment has been allocated up to its maximum size, which
is sufficient to hold 4,500,000 rows, and the second PSU in each segment has
sufficient space allocated to hold 1,500,000 rows. The following figure illus-
trates this table.

TUNE rows_per_taskROWS_PER_SCAN_TASK

SET rows_per_taskROWS_PER_SCAN_TASK ;

rows_per_task An integer in the range of 1 to 231. A higher value provides
less parallelism in returning rows from the queried table,
and a lower value more parallelism. (Informix recommends
this number be at least 5000.)
Tuning a Warehouse for Parallel Query Processing 11-15

ROWS_PER_SCAN_TASK
Assuming a maximum of one task per disk group and a
ROWS_PER_SCAN_TASK value of 2,000,000, the maximum number of tasks
that could be allocated to a relation scan of the table is computed as follows:

1. Three disk groups, one for each of the large PSUs in each segment, are
each large enough to hold over 2,000,000 rows. These disk groups
contribute three tasks to the maximum task count even though each
PSU is more than twice as large as the value for the parameter
ROWS_PER_SCAN_TASK.

2. Three disk groups, one for each of the small PSUs in each segment,
have allocated space insufficient to hold 2,000,000 rows. Thus the
total number of rows that could be held in the allocated space in all
these groups is added up to yield 4,500,000 rows. This number is
divided by 2,000,000 and rounded down to yield two tasks.

3. The resulting maximum task count is 3 + 2 = 5. So a relation scan of
this table would be processed by at most 5 parallel tasks.

The number of tasks actually used is also bounded by the values set for the
TOTALQUERYPROCS and QUERYPROCS parameters.

Figure 11-1
Disk Groups

18,000,000 rows

PSUs, each in its own disk groupSegments

Segment1

Segment2

Segment3

4,500,000 1,500,000

4,500,000 1,500,000

1,500,0004,500,000

Two tasks for these three
disk groups combined

One task for each of
these three disk groups
11-16 Informix Red Brick Decision Server Administrator’s Guide

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
The server uses the values of the parameters ROWS_PER_FETCH_TASK and
ROWS_PER_JOIN_TASK to estimate the number of parallel tasks to use for
queries that use a STAR index.

Queries vary in the amount of work done during the index-probing (join)
phase and the row-data-processing (fetch) phase. These parameters allow
you to set different limits for each phase. For example, if your queries tend to
require a lot of processing after each row is fetched (GROUP BY, SUM, MIN,
and so on), assign fewer rows per task for the fetch phase than for the join
phase so that more tasks are used for the fetch phase.

These parameters allow you to control parallel processing for queries that use
a STAR index, based on the following guidelines:

■ The ROWS_PER_JOIN_TASK parameter enables parallelism for the
STARjoin. If the number of join tasks is less than 1, parallelism is not
enabled for both the fetch and join phases. For more details, refer to
“Enabling Parallelism for a STARjoin” on page 11-19.

■ The more tightly constrained a query is on the columns that partic-
ipate in the STAR index, the smaller the number of parallel tasks
needed to probe the index efficiently during the join phase. The
ROWS_PER_JOIN_TASK parameter defines what “tight” is and how
many tasks to use during the join phase.

■ The more rows to be returned and the more processing of row data
to be done, the larger the number of parallel tasks that can be used
effectively during the fetch phase. The ROWS_PER_FETCH_TASK
parameter determines how many tasks to use during the fetch phase.

The database server uses several equations with the values specified in these
parameters to determine the degree of parallelism for the fetch and join
phases:

■ Estimated rows

■ Number of tasks

■ Parallelism enablement for STARjoin

■ Number of rows in dimension tables

The following sections describe these equations.
Tuning a Warehouse for Parallel Query Processing 11-17

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
Estimated Rows

To estimate the number of rows to be processed by the join fetch and join
phases for queries that use a STAR index, the database server uses the
following equation.

The numerator in this equation is applied after the constraints on the
dimension tables are processed and the number of rows in each dimension
table that satisfy the constraints is known. These numbers are multiplied
together and then multiplied by the ratio of rows in the referencing table to
all possible values in the STAR index—a type of density or sparseness, to
determine an estimated number of rows to return from the STAR index.

Number of Tasks

The database server uses the estimated number of rows and the parameter
ROWS_PER_TASK to calculate how many tasks to use during each phase of
query processing. The following equations show this process.

Estimated rows
count(*) from fact_table〈 〉 number of rows from dimension table∏〈 〉⋅

count(*) from dimension tables〈 〉∏
---=

Number of fetch tasks estimated rows
ROWS_PER_FETCH_TASK
--=

Number of join tasks estimated rows
ROWS_PER_JOIN_TASK
--=
11-18 Informix Red Brick Decision Server Administrator’s Guide

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
Enabling Parallelism for a STARjoin

The database server executes a STARjoin in parallel only if it calculates one or
more join tasks. In other words, the database server enables parallelism for a
STARjoin when the following criterion is true:

Number of join tasks = estimated rows / ROWS_PER_JOIN_TASK >=
1

Important: If the calculated number of join tasks is less than 1, the database server
sets both the number of join tasks and the number of fetch tasks to 0, regardless of the
calculated number of fetch tasks.

Parallel fetches are enabled only if the following conditions are true:

■ The calculated number of join tasks is 1 or more.

If the calculated number of join tasks is less than 1, the calculated
number of fetch tasks is ignored.

■ The estimated number of rows is greater than the value of the
ROWS_PER_FETCH_TASK parameter.

For an illustration of these criteria, see “Example 2: Enabling Parallelism for
a STARjoin” on page 11-22.

Number of Rows in Dimension Tables

As the equation in “Estimated Rows” on page 11-18 shows, the database
server counts the number of rows in each dimension table to estimate the
number of rows to be processed by fetch and join tasks. The database server
uses the ratio of the number of rows in dimension tables to the total number
of rows in dimension tables to derive the estimated rows.

For optimal performance of queries, load dimension tables with the number
of rows that is close to the actual number of corresponding foreign key values
in the referencing table. A large number of rows in the dimension table
without corresponding key values in the referencing table can result in the
following effects:

■ Disable parallel joins. See “Example 3: Effect of Preloading Rows on
Parallelism in a STARjoin Plan” on page 11-23.

■ Choose a less than optimal query plan. See “Example 4: Effect of
Preloading Rows on Query Plan Choice” on page 11-24.
Tuning a Warehouse for Parallel Query Processing 11-19

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
Tip: To ensure that the estimated number of rows is relatively accurate, do not
preload too many rows in dimension tables that have no corresponding foreign key
values in the referencing table. The database server uses this value to enable parallel
STARjoins and to make dynamic STARjoin plan choices.

Syntax

To specify the minimum number of rows per task used in the preceding
equation for each phase for all sessions, enter lines in the rbw.config file using
the following syntax.

To specify the minimum number of rows per task used in the preceding
equation for each phase for specific sessions, enter a SET command using the
following syntax.

Tip: As a general rule, the values of the parameters ROWS_PER_JOIN_TASK and
ROWS_PER_FETCH _TASK should each be at least 5000 to justify the use of parallel
tasks.

TUNE rows_per_taskROWS_PER_JOIN_TASK

TUNE rows_per_taskROWS_PER_FETCH_TASK

SET rows_per_taskROWS_PER_JOIN_TASK

rows_per_taskROWS_PER_FETCH_TASKSET

;

;

rows_per_task Integers in the range of 1 to 231. A higher value provides less
parallelism, and a lower value provides more parallelism.
The server does not run a query in parallel if the number of
join tasks given by the equation in “Enabling Parallelism for
a STARjoin” on page 11-19 is less than 1.
11-20 Informix Red Brick Decision Server Administrator’s Guide

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
Example 1: Estimating Rows

This example illustrates how the database server uses the equations in
“Estimated Rows” on page 11-18 and “Number of Tasks” on page 11-18. A
referencing (fact) table Fact has 3,000,000 rows. Three referenced (dimension)
tables are used in its STAR index: Product with 2,000 rows, Market with 50
rows, and Period with 156 rows. The ROWS_PER_JOIN_TASK parameter is
specified to be 90,000 rows per task, and the ROWS_PER_FETCH_TASK
parameter is specified to be 50,000.

After the constraints are processed, all the rows from the Product table, 10
rows from the Market table, and 52 rows from the Period table satisfy the
constraints.

Based on ROWS_PER_JOIN_TASK, which is specified as 90,000 rows per task,
apply the equation for the number of tasks that will be used to process the
STAR index as follows:

Number of join tasks = floor(200,000 / 90,000) = 2 tasks

Based on ROWS_PER_FETCH_TASK, which is specified as 50,000 rows per
task, the number of tasks used to fetch the data and perform any result pre-
aggregation is calculated as follows:

Number of fetch tasks = floor(200,000 / 50,000) = 4 tasks

These figures indicate that six (2 + 4) tasks could be used to process the query
based on the values specified for the parameters ROWS_PER_JOIN_TASK and
ROWS_PER_FETCH_TASK.

Estimated rows 3 000 000, ,() 2 000, 10 52××()⋅
2 000 50 156××,()

---=

200 000,=
Tuning a Warehouse for Parallel Query Processing 11-21

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
Example 2: Enabling Parallelism for a STARjoin

This example illustrates how the database server uses the equation in
“Estimated Rows” on page 11-18 and the criteria in “Enabling Parallelism for
a STARjoin” on page 11-19 to enable parallelism for a query that uses a STAR
index.

Suppose a referencing fact table has 400,000,000 rows and two dimension
tables involved in the STARjoin have 100 rows and 4000 rows, respectively.
The number of rows that satisfy the constraints are 4 rows from one
dimension table and 10 rows from the second dimension table. If
ROWS_PER_JOIN_TASK is 600,000, the criteria for enabling parallel tasks for
the STARjoin is not true, as the following equations show:

Estimated rows = (400,000,000) * ((4 * 10) / (4000 * 100))
= 40,000

Number of join tasks = floor(Estimated rows /
ROWS_PER_JOIN_TASK)

= 40,000 / 600,000
= 0 tasks

Criteria to enable parallelism:
Number of join tasks >= 1 tasks

0 < 1

In this example, if ROWS_PER_FETCH_TASK is 20,000, the number of fetch
tasks is 2, as the following equation shows. However, because the number of
join tasks is less than 1, parallelism is not enabled for the fetch phase even
though the number of fetch tasks is 2.

Number of fetch tasks = floor(Estimated
rows/ROWS_PER_FETCH_TASK)

= 40,000 / 20,000
= 2 tasks

On the other hand, if the total number of rows in the second dimension table
is 100 instead of 4,000, the database server enables parallel tasks, as the
following equations show:

Estimated rows = (400,000,000) * ((4 * 10) / (100 * 100))
= 1,600,000

Number of join tasks = floor(Estimated rows /
ROWS_PER_JOIN_TASK)

= 1,600,000 / 600,000
= 2 tasks
11-22 Informix Red Brick Decision Server Administrator’s Guide

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
Example 3: Effect of Preloading Rows on Parallelism in a STARjoin Plan

This example illustrates how the number of rows in a dimension table affects
the enablement of parallel tasks for a STARjoin.

A common practice is to preload all possible values in a dimension table even
though the fact table might contain only a subset of the values. For example,
you might load 10 years of dates into the Time dimension table, which results
in more than 3600 rows. However, the corresponding referencing table might
actually contain only data for three months, which is about 92 dates.

If ROWS_PER_JOIN_TASK is 600,000, ROWS_PER_FETCH_TASK is 200,000, and
the referencing table contains 400,000,000 rows, the following equations
show that the calculated number of join tasks is less than 1. Therefore, paral-
lelism is not enabled for both the join and fetch phases even though the
calculated number of fetch tasks is 2.

Estimated rows = (400,000,000) * (4) / (3600)
= 444,444

Number of join tasks = floor(Estimated rows /
ROWS_PER_JOIN_TASK)

= 444,444 / 600,000
= 0 join tasks

Number of fetch tasks = floor(Estimated
rows/ROWS_PER_FETCH_TASK)

= 444,444 / 200,000
= 2 fetch tasks

Criteria to enable parallelism:
Number of join tasks >= 1 tasks

0 < 1

However, if you load a number of rows in the Time dimension table that is
closer to the actual number of values in the referencing table (say 100 instead
of 4,000), the following equations show that the calculated number of join
tasks is greater than 1:

Estimated rows = (400,000,000) * (4) / (100)
= 16,000,000

Number of join tasks = floor(Estimated rows /
ROWS_PER_JOIN_TASK)

= 16,000,000 / 600,000
= 26 tasks
Tuning a Warehouse for Parallel Query Processing 11-23

ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
Criteria to enable parallelism:
Number of join tasks >= 2 tasks

26 > 1

Therefore, parallelism is enabled for the STARjoin when a more consistent
number of rows is loaded in the Time dimension table.

Example 4: Effect of Preloading Rows on Query Plan Choice

This example illustrates how loading extra dates in a dimension table can
lead to a less-than-optimal dynamic STARjoin plan choice.

The ratio of the number of rows in a dimension table to the total number of
rows in a dimension table affects the selectivity estimate on the referencing
table. The database server uses selectivity to dynamically select one of the
following plan choices:

■ Table scan

■ STARjoin

■ TARGETjoin

If you preload more rows in the dimension table than the actual number of
foreign key values in the referencing table by an order of magnitude, the
database server might choose a less-than-optimal query plan.

Suppose 60 rows in the dimension table satisfy the constraint and the refer-
encing table contains 400,000,000 rows. If you preload 4000 rows into a
dimension table, the following equations show that the estimated number of
rows is only 1.5 percent of the total number of rows possible. In this case, the
database server chooses a STARjoin or TARGETjoin.

Estimated rows 400 000 000, ,〈 〉 60()⋅
4000〈 〉

--- 6 000 000, ,==

 Selectivity 6 000 000, ,
400 000 000, ,
------------------------------------ 0.015 1.5 percent= = =
11-24 Informix Red Brick Decision Server Administrator’s Guide

Forcing the Number of Parallel Tasks with the FORCE_TASKS Parameters
However, the actual number of values loaded in the fact referencing table is
100. The following equations show that the selectivity is actually 60 percent.
A table scan is more efficient than a STARjoin or TARGETjoin to access this
larger percentage of rows.

Forcing the Number of Parallel Tasks with the
FORCE_TASKS Parameters
The FORCE_TASKS parameters allow you to explicitly specify the number of
parallel tasks that are used to process a query. The ROWS_PER_TASK param-
eters require that you determine a minimum number of rows needed to
justify starting a parallel task, an implicit limit. Except for the parameter
FORCE_HASHJOIN_TASKS, these parameters are analogous to the
ROWS_PER_TASK parameters in their target queries:

■ FORCE_SCAN_TASKS specifies a maximum number of tasks that can
be used for relation-scan operations. This parameter does not affect
queries that use an index, only those that perform a relation scan.

■ FORCE_FETCH_TASKS specifies the maximum number of parallel
tasks that can be used for the fetch portion of a query using a STAR
index.

■ FORCE_JOIN_TASKS specifies the maximum number of parallel tasks
that can be used for the join portion of a query using a STAR index.

■ FORCE_HASHJOIN_TASKS specifies the maximum number of parallel
tasks that can be used for each hybrid hash join in a query.

■ FORCE_AGGREGATION_TASKS specifies the maximum number of
parallel tasks that can be used for each group in a partitioned parallel
query.

Estimated rows 400 000 000, ,〈 〉 60〈 〉⋅
100〈 〉

-- 240 000 000, ,==

 Selectivity 240 000 000, ,
400 000 000, ,
------------------------------------ 0.60 60 percent= = =
Tuning a Warehouse for Parallel Query Processing 11-25

Forcing the Number of Parallel Tasks with the FORCE_TASKS Parameters
These parameters are designed to be used only in cases where you want to
override the general allocation of parallel tasks. For example, you are
running a query to build an aggregate table, no one else is using the system,
and you want the query to complete as quickly as possible even if it greatly
increases resource consumption.

The FORCE_AGGREGATION_TASKS parameter has an effect only if parti-
tioned parallelism is enabled with the PARTITIONED PARALLEL
AGGREGATION parameter. For more information refer to, “Enabling Parti-
tioned Parallelism for Aggregation” on page 11-33.

Syntax

To specify the number of tasks for all sessions, enter a line in the rbw.config file
using the following syntax.

FORCE_SCAN_TASKS

value

OFFTUNE

FORCE_FETCH_TASKS

value

OFFTUNE

FORCE_JOIN_TASKS

value

OFFTUNE

FORCE_HASHJOIN_TASKS

value

OFFTUNE

FORCE_AGGREGATION_TASKSTUNE

value

OFF
11-26 Informix Red Brick Decision Server Administrator’s Guide

Forcing the Number of Parallel Tasks with the FORCE_TASKS Parameters
To specify the number of tasks for a single session, enter a SET statement
using the following syntax.

FORCE_SCAN_TASKS

value

OFFSET

FORCE_FETCH_TASKS

value

OFFSET

FORCE_JOIN_TASKS

value

OFFSET

FORCE_HASHJOIN_TASKS

value

OFFSET

FORCE_AGGREGATION_TASKSSET

value

OFF ;

OFF Explicit control of parallelism by the specified task limit is
not enabled. The default value is OFF.

value An integer value that explicitly limits the maximum
number of tasks. However, this value does not guarantee
the specified number. For the SCAN, FETCH, JOIN, and
HASHJOIN parameters, the actual number of tasks used
has an upper limit of the lowest of these three values:

■ The specified FORCE_TASKS value.

■ The number of PSUs over which the table is
distributed.

■ The number of tasks that can be allocated from the
QUERYPROCS/TOTALQUERYPROCS pool.
Tuning a Warehouse for Parallel Query Processing 11-27

FORCE_SCAN_TASKS
FORCE_SCAN_TASKS
The value set for FORCE_SCAN_TASKS controls the number of parallel tasks
for relation scans of tables.

However, the FORCE_SCAN_TASKS value does not guarantee that a certain
number of parallel tasks is used. The actual number of tasks used is the lowest
of these three values:

■ The FORCE_SCAN_TASKS value.

■ The number of PSUs over which the table is distributed.

■ The number of tasks that can be allocated from the
QUERYPROCS/TOTALQUERYPROCS pool.

After 50 percent of the TOTALQUERYPROCS pool has been allocated,
subsequent queries are allocated fewer tasks per query.

For the FORCE_AGGREGATION_TASKS parameter, the
actual number of tasks used will have an upper limit of the
lower of these two values:

■ The specified FORCE_AGGREGATION_TASKS
value.

■ The number of tasks that can be allocated from the
QUERYPROCS/TOTALQUERYPROCS pool.

No argument If OFF or value is not specified, the SET command returns
the current setting for that parameter. For example:

set force_scan_tasks;
** INFORMATION ** (1433) FORCE_SCAN_TASKS is

currently set to 6.
11-28 Informix Red Brick Decision Server Administrator’s Guide

FORCE_FETCH_TASKS and FORCE_JOIN_TASKS
Example

Assume the following settings.

Whether the FORCE_SCAN_TASKS value is used in this case depends on the
number of tasks available from the TOTALQUERYPROCS pool. If only 6 tasks
are already allocated, 18 tasks are available, so the FORCE_SCAN_TASKS
value of 16 is used.

Usage Notes

Also note the following points regarding task allocation for relation scans:

■ If FORCE_SCAN_TASKS is set, the ROWS_PER_SCAN_TASK value is
ignored.

■ If FORCE_SCAN_TASKS is set to a value that is greater than the
number of disk groups, some disk groups are simply allocated more
than one task. When FORCE_SCAN_TASKS is set, the number of disk
groups does not influence the behavior of parallel processing.

FORCE_FETCH_TASKS and FORCE_JOIN_TASKS
The values set for FORCE_FETCH_TASKS and FORCE_JOIN_TASKS control the
number of parallel tasks for fetching rows and joining tables in queries that
use a STAR index. If either of these values is greater than or equal to 1, it
overrides the corresponding value set for ROWS_PER_FETCH_TASK or
ROWS_PER_JOIN_TASK.

Parameter Value

FORCE_SCAN_TASKS 16

PSUs in table 18

QUERYPROCS 18

TOTALQUERYPROCS 24
Tuning a Warehouse for Parallel Query Processing 11-29

FORCE_FETCH_TASKS and FORCE_JOIN_TASKS
However, the FORCE_FETCH_TASKS and FORCE_JOIN_TASKS values do not
guarantee that a certain number of parallel tasks is used. The actual number
of tasks used to fetch rows is the lowest of these three values:

■ The FORCE_FETCH_TASKS value.

■ The number of PSUs over which the table is distributed.

■ The number of tasks available from the pool
QUERYPROCS/TOTALQUERYPROCS.

The actual number of tasks used to join tables is usually the lowest of these
two values:

■ The FORCE_JOIN_TASKS value.

■ The number of tasks available from the pool
QUERYPROCS/TOTALQUERYPROCS.

In rare cases, the FORCE_JOIN_TASKS value might be greater than the number
of STAR index rows that match the constraints in the query. Therefore, it is not
possible to logically divide and process the query by the specified number of
tasks. Instead, the number of matching rows is used to set the limit on parallel
join tasks.

Examples

FORCE_FETCH_TASKS

Assume the following settings.

In this case, whether the FORCE_FETCH_TASKS value is used depends on the
number of tasks available from the TOTALQUERYPROCS pool. If only 6 tasks
are already allocated, 18 tasks are available, and the FORCE_FETCH_TASKS
value of 16 is used.

Parameter Value

FORCE_SCAN_TASKS 16

PSUs in table 18

QUERYPROCS 18

TOTALQUERYPROCS 24
11-30 Informix Red Brick Decision Server Administrator’s Guide

FORCE_FETCH_TASKS and FORCE_JOIN_TASKS
FORCE_JOIN_TASKS

Assume the following settings.

If nine or more tasks are available from the TOTALQUERYPROCS pool, the
FORCE_JOIN_TASKS value is used.

Usage Notes

Also note the following points regarding task allocation for fetching rows
and joining tables:

■ You do not have to force both fetch and join tasks. For example, you
can force join tasks but allow fetch tasks to be computed
dynamically.

■ If FORCE_FETCH_TASKS is set, the ROWS_PER_FETCH_TASK value is
not used. Similarly, if FORCE_JOIN_TASKS is set, the
ROWS_PER_JOIN_TASK value is not used.

■ Although the number of PSUs over which the table is distributed
affects the allocation of parallel fetch tasks, the number of disk
groups does not.

■ The number of PSUs used to partition the STAR index does not affect
the allocation of parallel join tasks.

■ For joins of multi–fact tables, one fact table is selected to control the
partitioning. If 10 PSUs are used to distribute the chosen fact table, 10
tasks are available for fetch-task partitioning.

■ If fewer than the requested number of tasks are available from the
QUERYPROCS/TOTALQUERYPROCS pool and both FORCE options
are set, the system tries to preserve the ratio of FORCE_JOIN_TASKS
to FORCE_FETCH_TASKS values.

Parameter Value

FORCE_SCAN_TASKS 8

QUERYPROCS 12

TOTALQUERYPROCS 30
Tuning a Warehouse for Parallel Query Processing 11-31

FORCE_HASHJOIN_TASKS
FORCE_HASHJOIN_TASKS
The value set for FORCE_HASHJOIN_TASKS controls the number of parallel
tasks for hybrid hash joins.

However, the FORCE_HASHJOIN_TASKS value does not guarantee that a
certain number of parallel tasks is used. The actual number of tasks used is
the lowest of the following values:

■ The FORCE_HASHJOIN_TASKS value.

■ The number of tasks that can be allocated from the
QUERYPROCS/TOTALQUERYPROCS pool.

Example

Assume the following settings.

If 10 or more tasks are available from the TOTALQUERYPROCS pool, the
FORCE_HASHJOIN_TASKS value is used.

Parameter Value

FORCE_SCAN_TASKS 8

QUERYPROCS 12

TOTALQUERYPROCS 30
11-32 Informix Red Brick Decision Server Administrator’s Guide

Enabling Partitioned Parallelism for Aggregation
Usage Notes

Also note the following points regarding task allocation for parallel hybrid
hash joins:

■ The PARALLEL_HASHJOIN option must be set to ON, either with a
SET PARALLEL_HASHJOIN ON command or a TUNE
PARALLEL_HASHJOIN ON parameter, in order to gain any paral-
lelism from hybrid hash joins.

■ You must have at least 2 more than the value you specify in
FORCE_HASHJOIN_TASKS available from the
QUERYPROCS/TOTALQUERYPROCS pool in order to achieve that
level of parallelism. For example, in order to get 8 parallel hash join
tasks, you must specify a FORCE_HASHJOIN_TASKS value of 8 and
have at least 10 tasks available from the pool QUERYPROCS/
TOTALQUERYPROCS.

Enabling Partitioned Parallelism for Aggregation
Queries that involve aggregation (SUM, MIN, MAX, COUNT) of groups
specified in the GROUP BY clause can benefit from parallelism partitioned on
the grouping columns, especially if there is a large number of groups (for
example, hundreds of thousands or millions).

Syntax
To enable or disable partitioned parallel aggregation, enter a line in the
rbw.config file using the following syntax.

PARTITIONED_PARALLEL_AGGREGATION

ON

OFFTUNE
Tuning a Warehouse for Parallel Query Processing 11-33

Syntax
To enable or disable partitioned parallel aggregation, enter a SET command
using the following syntax.

Usage Notes

Once partitioned parallelism is enabled (set PARTITIONED PARALLEL
AGGREGATION to ON), the value of the FORCE_AGGREGATION_TASKS
parameter is enforced. If partitioned parallelism is disabled (PARTITIONED
PARALLEL AGGREGATION set to OFF), the FORCE_AGGREGATION_TASKS
parameter is ignored.

When PARTITIONED PARALLEL AGGREGATION is set to OFF, a potential
performance gain occurs with parallel aggregation, but where the parallelism
is not partitioned by the grouping columns. For relatively small numbers of
groups, this should provide better performance than the partitioned
parallelism.

When you set partitioned parallel aggregation on, the number of tasks used
on your computer potentially doubles: the number of tasks needed for the
parallel aggregation plus the number of tasks needed for the rest of the query
processing. Therefore, to ensure the same resources to the other parts of the
parallel query, increase the values of the parameters QUERYPROCS and
TOTALQUERYPROCS.

Partitioned parallelism is also effective when populating a table with an
INSERT INTO...SELECT...GROUP BY operation, and it is particularly effective
when there is a large number of groups. This might improve the performance
of these types of operations when populating aggregate tables for use with
the Vista option. For details about the Vista option, refer to the Informix Vista
User’s Guide.

PARTITIONED PARALLEL AGGREGATION

ON

OFFSET ;

OFF Disables partitioned aggregation parallelism. The default value
is OFF.
11-34 Informix Red Brick Decision Server Administrator’s Guide

System Considerations for Parallel Tasks
System Considerations for Parallel Tasks
The parameters described in “ROWS_PER_FETCH_TASK and
ROWS_PER_JOIN_TASK” on page 11-17 determine upper limits on the
number of parallel tasks applied for specific operation. However, other
system considerations also limit these numbers.

The number of tasks applied to index-join tasks is also limited by the number
of file groups in which the segments for the selected STAR index reside. In
order for two tasks to be used to process the join tasks, the index must be
spread over at least two file groups. If it is fewer than two file groups, only
one task will be applied (unless you force parallelism with the parameter
FORCE_JOIN_TASKS or specify more than one disk group task with the
parameter GROUP). In general, if you examine the segments in which the
STAR index resides, the limit on the amount of parallelism used in the join
tasks is the number of file groups covered by those segments.

The number of tasks assigned to fetch tasks is also limited in the same
manner by the number of groups in which the data resides.

Another limitation is the possibility that the system might be unable to
allocate the number of tasks desired. In “Example 1: Estimating Rows” on
page 11-21, the equations indicate that six tasks should be allocated to
process the query. However, if the system is able to allocate only four tasks (if
other users are using some of the tasks allocated for processing parallel
queries), the system must allocate the available tasks between the join and
fetch phases. The allocation of limited tasks to the fetch phases is based on
the following equation:

The remaining available tasks are then allocated for join processing.

In the example, with only four tasks available, the number of tasks allocated
to fetch processing is two.

Number of fetch processes MAX 1 requested for fetch
total requested

-- total available×, 
 =

Number of fetch processes MAX 1 3
5
--- 4×, 

  2==
Tuning a Warehouse for Parallel Query Processing 11-35

Analysis of System Resources and Workload
The remaining two tasks are allocated to join processing.

The most important point is that parallelism is limited by the number of
groups in which the index and data reside. In general, the system does not
allocate more tasks than there are groups affected by the query.

Example

This example illustrates how the number of tasks allocated is affected by the
distribution of the index and data across file groups. Assume a table is imple-
mented as follows:

create segment idx1 … (two PSUs);
create segment idx2 … (two PSUs);
create segment data1 … (three PSUs);
create segment data2 … (three PSUs);

create table fact…
data in (data1, data2) segment by …
primary index in (idx1, idx2) segment by references of
(prodkey)

ranges (min:1000, 1000:max)

Assume that each PSU is in a disk group by itself.

The maximum number of four tasks can be allocated for join processing
because the index covers four file groups. If the constraints cover only one
segment, the maximum number of join tasks actually would be two because
the segment contains two PSUs, each in a separate disk group.

The row data accesses are unpredictable. However, the calculated maximum
number of fetch tasks that might be allocated to fetch processing is six
because the data is distributed across six PSUs, each in a separate file group.

Analysis of System Resources and Workload
Parallelism takes advantage of available system resources by scheduling
more work concurrently to speed up query processing. Parallelism also intro-
duces additional factors that affect performance gains. Getting the best
performance on parallel queries depends on the degree to which you can
exploit concurrency and load balancing across a system, a task that requires
careful planning, even before you load the database. The main questions
concern system resource allocation and usage.
11-36 Informix Red Brick Decision Server Administrator’s Guide

Disk Usage
Disk Usage
To reduce disk contention and increase I/O activity, the I/O load should be
distributed evenly across as many physical disks as there are parallel tasks.
The object is to improve disk service time and I/O concurrency in order to
reduce the time a query waits because its tasks are blocked on I/O.

Ideally, no more than one disk group, as defined by the FILE_GROUP
parameter, should be assigned to one physical disk. Disk arrays or disks
grouped together using a logical volume manager facility are exceptions. In
these cases, multiple physical disks are always grouped together as one
logical disk. In the following discussions, a disk group is treated as inter-
changeable with a physical disk. If there are multiple files (PSUs) per physical
disk, these files should normally be organized in a single disk group using
the FILE_GROUP parameter. Such an organization ensures that I/O can be
scheduled evenly and reduces excessive head movement on the disk,
especially important for parallel scans where it is desirable to have an orderly
sequential access on the file and to take as much advantage as possible of any
available read-ahead capability.

In some cases where disk arrays or disks are grouped together, such as
striped disks or RAID systems, or where the query workload is CPU intensive
rather than I/O bound and there is excess CPU capacity, better performance
might result from allowing more than one task per disk group. To allow
parallel tasks within a disk group for a query, use the TUNE GROUP
parameter to specify the number of tasks.

For Data

If you are not sure how uniformly the data will be distributed across
segments, or if you want to spread the data across more physical disks
because you anticipate the queries will tend to cluster on a single disk or only
a few disks, use the SEGMENT BY HASH option in creating tables. Hashing
segments helps to ensure that data will be evenly distributed across all
segments and thereby helps to balance processing across parallel tasks.
However, before deciding to use the hash option, consider the space
management issues associated with hashing. For example, hashed segments
cannot be dropped individually or taken offline for loads.
Tuning a Warehouse for Parallel Query Processing 11-37

Memory Usage
For STAR Indexes

It is not always necessary or desirable to segment the STAR index. Consider
whether the benefit merits the extra administration overhead. Parallelism for
join tasks is derived based on PSUs and disk groups. As long as there are
multiple PSUs and they are not grouped in a disk group, parallelism can be
invoked even if the STAR index is in a single segment.

If the STAR index is to be loaded across multiple segments for parallel join
processing, load the index on separate disks if possible. As a minimum, allow
as many index PSUs or segments as the planned number of join tasks. If the
CPUs are fast, you might need to allow more index and join tasks to keep the
CPUs busy. If not enough disks are available, the next best option is to load
the index segments on the same disks as the table segments, as long as the
disks are not too busy.

Memory Usage
Memory requirements increase with parallel processing, even if the number
of users remains the same. Because parallel tasks are spawned from the
“parent” server, the child tasks inherit many of the characteristics of the
parent, including memory requirements. So be aware of the additional
memory demands in parallel processing, particularly important in a
multiuser environment.

To determine memory requirements at your site, first determine how many
users are actively executing queries at the same time (concurrently active
users). The number of concurrently active users determines the memory
demand and paging/swapping activities in the system at any one time. For
example, if 100 users are connected, but 80 of them submit a query (10
minutes long) only once a day, 18 of them only twice a day (5 minutes long),
and 2 of them all the time, you can estimate about 3 concurrently active users
(assuming the 98 users submit their queries evenly throughout the day).
Three users probably will not introduce heavy paging or swapping activities
in the system. However, if there are 50 concurrently active users, examine
carefully whether there is enough memory to support them. If there is not
enough memory, thrashing occurs, resulting in heavy paging or swapping
activities.
11-38 Informix Red Brick Decision Server Administrator’s Guide

CPU Allocation
If the number of concurrently active users is high, consider either adding
more memory or reducing the amount of parallelism. You can reduce paral-
lelism either by reducing the number of query tasks per user (QUERYPROCS)
or by ensuring that only large queries use parallel processing. You can
prevent trivial or small queries from using parallel processing by choosing a
large value (thousands to tens-of-thousands for STARjoin queries and tens- to
hundreds-of-thousands for scans) in the ROWS_PER JOIN, FETCH, and
SCAN_TASK parameters.

When the system is up and running, monitor the paging and swapping activ-
ities. Acceptable values for these two activities vary depending on system
size and speed. Rather than using generic values that might apply to your
system, monitor the system when it is not performing optimally. On UNIX,
monitor the waiting for I/O percentage (WIO) in the System Activity Report
(SAR) or an equivalent performance monitoring tool, and also monitor the
disk service time. On Windows NT, to monitor the percentage of time spent
waiting for I/O and the disk service time, use Performance Monitor or
another performance monitoring tool.

You can also evaluate disk usage based on busy percentage, disk request
queue, and disk waiting time. If all these indicators are high, users are
probably kept waiting while the system is busy paging or thrashing in
memory. To decrease the wait time, you can add more paging and swapping
devices, reduce parallelism, or add memory.

CPU Allocation
The degree of concurrency in parallel processing largely depends on how
many CPUs are available. Although allocating all the CPUs in the system
might yield the best results, this option is often not practical because other
work in the system could be competing for CPU resources. If all the CPUs are
used for parallel query processing, other users would experience a slow-
down because CPU resources are less available to them. Therefore, each
administrator must decide how the CPU resources are to be distributed. Of
course, if all the CPUs are already saturated (that is, 100 percent busy),
there will be no gain and perhaps even a slight degradation from parallel
processing.
Tuning a Warehouse for Parallel Query Processing 11-39

CPU Allocation
After you have determined the number of CPUs to use for parallel query
processing, you can derive the number of parallel tasks (QUERYPROCS) as
follows:

■ For a query that is CPU intensive, set the QUERYPROCS parameter to
the number of CPUs divided by the number of concurrently active
users.

■ For a query that is not CPU intensive but is I/O intensive, set the
QUERYPROCS parameter to two or three times the value derived for
CPU-intensive queries. Monitor the CPU-busy statistic to determine
whether more parallel tasks are needed.

For example, assume you have a 12-CPU system and you want to allocate
about 65 percent of CPU resources (8 CPUs) to parallel processing. If the
system is 45 percent busy overall, it is reasonable to add more parallel tasks
until the system reaches at least 65 percent busy. And if other tasks are
executing in the system at the same time, it is reasonable to add even more
parallel tasks, depending on the distribution of resource consumption. (If
there are other tasks, parallel processing probably was not consuming 65
percent of the CPU resources.)

The FILE_GROUPS setup also affects concurrency. For I/O-intensive queries,
specify as many disk groups (physical disks) as there are parallel tasks
(QUERYPROCS). One factor that the server uses to determine how many
parallel tasks to create is the number of disk groups. If the number of disk
groups is less than the QUERYPROCS value, the number of parallel tasks to
create is reduced to the number of disk groups.

If there are more CPUS than disk groups and there is excessive CPU capacity,
use the TUNE GROUP parameter to provide more parallelism than is
normally allocated per disk group.
11-40 Informix Red Brick Decision Server Administrator’s Guide

Tuning for Specific Query Types
Tuning for Specific Query Types
This section describes how you can fine-tune parallel processing for specific
query types. Before tuning for parallel processing, however, make sure that
the queries themselves are fine-tuned with well-written SQL.

The FORCE_TASKS parameters override the corresponding ROWS_PER_TASK
parameters and are not intended for use as general tuning parameters. The
following discussion focuses on tuning with the ROWS_PER_TASK
parameters.

For information on how Red Brick Decision Server processes queries, refer to
“Understanding Red Brick Query Processing” in Chapter 9.

Parallel STARjoin Queries
The speedup expected from parallel processing of STARjoin queries (queries
that use a STAR index) depends primarily on:

■ Density of the query (number of rows selected from the referencing
table).

■ Number of parallel tasks.

■ Mix of parallel (join and fetch) tasks.

■ Number of disk groups, or file groups, as defined by the TUNE
FILE_GROUPS entries in the rbw.config file.

■ Amount of parallelism per disk group, as defined by the TUNE
GROUP entries in the rbw.config file. Allowing parallelism within disk
groups might increase disk contention and degrade performance.

Density

In general, the higher the density of a query, the better the potential for
speedup.
Tuning a Warehouse for Parallel Query Processing 11-41

Parallel STARjoin Queries
Number of Parallel Tasks

The number of tasks can depend on the distribution of the data. If data for the
query is clustered in the referencing table, it is possible that not all parallel
tasks will get work. In this case, hashing the referencing table segments helps
distribute the data more evenly across disks. For some cases where STARjoin
queries are slow, alternate STAR indexes might provide more speedup than
parallelism. Depending on which columns are constrained, consider
alternate STAR indexes before resorting to parallel processing.

Mix of Parallel Tasks and File Groups

Choosing the right mix between join and fetch tasks is also important in
speedup gains. For example, assume a query requires relatively more post
processing than join processing but has only one fetch task allocated. The
parallel speedup is much less than if more fetch tasks were allocated.

Use the following guidelines to finely tune the mix for specific queries:

■ For queries dominated by post processing, allocate more fetch than
join tasks.

■ For queries dominated by join processing, allocate more join than
fetch tasks.

■ For a mix of join and post processing, start by specifying an equal
number of join and fetch tasks. Then alter the ratio in both directions
by 50 percent to determine which ratio is best. Usually, ratios of n/1
or 1/n are not the best choices, but there are exceptions.

Use the ROWS_PER_JOIN/FETCH_TASK parameters to control the ratio
between join and fetch tasks. The values for these two parameters are
inversely proportional to the ratio desired. For example, for six join and two
fetch tasks, specify:

rows per join task = 2000
rows per fetch task = 6000
11-42 Informix Red Brick Decision Server Administrator’s Guide

Parallel STARjoin Queries
The actual allocation of tasks is more complicated:

1. The number of tasks is calculated by dividing the rows per join/fetch
task into the estimated number of rows. If the join or fetch value is
less than the estimated number of rows, no parallel tasks are created.

2. The number of tasks is evaluated against the number of file groups
and group limits. The smaller number becomes the new number of
tasks. For join tasks, the number of file groups for index segments is
used. For fetch tasks, the number of file groups for the table is used.

3. The QUERYPROCS value is compared with the sum of the join and
fetch tasks. The smaller number becomes the new number of tasks.

If the QUERYPROCS value is smaller, the ratio between the join and
fetch tasks (as specified by the ROWS_PER_JOIN/FETCH_TASK
values) is preserved. However, if the number of file groups for either
joins or fetches is less than the number of tasks allocated by the ratio,
the ratio is not preserved. Maximum parallelism is offered by
allocating join and fetch tasks up to the QUERYPROCS value.

4. If the remaining number of tasks specified by the QUERYPROCS
value is less than 50 percent of TOTALQUERYPROCS, a graceful
degradation process begins, assigning only a portion of the
remaining QUERYPROCS number.

Considerations for Multiuser Environments

In a multiuser environment, it is often not worthwhile to offer parallelism for
queries that take less than one minute or so. Parallel queries consume much
more memory, and the user-perceivable speed improvement is relatively
small. Consider the corresponding resource trade-off to decide which query
types (small, medium, or large) merit parallel processing. To prevent small
queries from using parallel processing, specify high values for the
ROWS_PER_JOIN/FETCH_TASK parameters.

Additionally, use the TOTALQUERYPROCS parameter to limit the number of
users of parallel processing. A reasonable value for the TOTALQUERYPROCS
parameter is two to three times the QUERYPROCS value. If there is enough
memory, you might find values of five times or higher acceptable. High
values for the ROWS_PER_JOIN/FETCH_TASK parameters ensure that only
large queries use parallel processing.
Tuning a Warehouse for Parallel Query Processing 11-43

Parallel Table Scans
Parallel Table Scans
The speedup provided by parallel processing of table-scan operations is
determined by the number of parallel scan tasks, the number of file (disk)
groups available, and the TUNE GROUP parameter value.

Depending on the speed of the CPUs, several parallel scan tasks might be
required to keep the number of CPUs busy. The recommended procedure is
to assign no more than one disk group to one physical disk and to allow
parallel scan processing to assign no more than one task per file (disk) group,
thus facilitating sequential contiguous disk access whenever no more than
one user is accessing the disk at a time. Otherwise, disk service times per
block might increase by orders of magnitude. However, you can use the
TUNE GROUP parameter to allow more than one task per group in cases
where the query is CPU bound on a multiprocessor system with additional
CPU capacity.

As described for parallel STARjoin queries, the recommendations for limiting
parallelism for small queries (those that take one minute or less) in multiuser
environments apply to ROWS_PER_SCAN_TASK as well.

SuperScan Technology
SuperScan technology is used whenever multiple users are scanning the
same table at the same time or overlap some of the time. The perceived
improvement varies greatly from time to time, depending on system
activities.

SuperScan technology takes advantage of the file buffer cache for the
operating system to reduce physical I/O activity. If the scanning tasks find
most of the I/O blocks in the file buffer cache, there will be a large decrease
in I/O activity. If few blocks are found in the file buffer cache, there will be a
smaller decrease. Because the file buffer cache is used by everyone in the
system, its state (that is, the hit rate) depends on the system activities. The
interval between additional users beginning to scan the table also affects the
decrease in I/O activity. If the timing and patterns of usage vary from day to
day, improvement from SuperScan technology might vary.
11-44 Informix Red Brick Decision Server Administrator’s Guide

About Reasonable Values
About Reasonable Values
No one set of tuning values applies to all customers across all queries. As
discussed in the previous sections, many considerations affect parallelism,
and they differ for each customer, depending on the hardware platform,
configuration, query mix, and number of users. The information presented
here highlights general areas of concern and provides guidelines for tuning
query performance for your environment.

The ROWS_PER_JOIN/FETCH/SCAN_TASK parameters have two main uses.
First, they control parallelism and determine when it is invoked. Use these
parameters to set the minimum estimated number of rows required before
parallel processing is used. Secondly, the ROWS_PER_JOIN/FETCH_TASK
parameters determine the ratio between join and fetch tasks for STARjoin
queries.

Previous sections discuss factors relevant to the number of parallel tasks. The
primary one is the number of CPUs. Then disk groups, memory, and users are
considered, with TOTALQUERYPROCS limiting the number of users for
parallel query processing.

Basic Guidelines
The following suggestions provide some basic guidelines for setting
reasonable values for parallel processing. Refer to the previous sections for
more detailed information. Each system and workload are unique, so you
must experiment to determine what works best at your site:

1. Set the ROWS_PER_JOIN/FETCH/SCAN_TASK values fairly high. For
more information, refer to “Memory Usage” on page 11-38 and
“Setting Minimum Row Requirements with ROWS_PER_TASK
Parameters” on page 11-13.

2. Set ROWS_PER_ JOIN_TASK and ROWS_PER_FETCH_TASK to the same
value. For more information, refer to “Tuning for Specific Query
Types” on page 11-41.

3. Set QUERYPROCS as discussed in “CPU Allocation” on page 11-39.

4. Set TOTALQUERYPROCS to at least two to three times the
QUERYPROCS value, or even higher if memory is available. For more
information, refer to “Limiting Available Tasks” on page 11-10.
Tuning a Warehouse for Parallel Query Processing 11-45

Basic Guidelines
5. If multiple PSUs for the same table are on the same disk device,
define a disk group (file group) for those PSUs to limit disk
contention. For more information, refer to “Disk Usage” on
page 11-37.

6. In most cases, you do not need to set the TUNE GROUP parameter.
Generally, only one task per disk group is best. For more infor-
mation, refer to “Allowing Parallelism Within Disk Groups with the
GROUP Parameter” on page 11-8.

These basic settings provide users with a reasonable environment for paral-
lelism on large queries, but they do not process every query optimally. To
fine-tune parallel processing for more optimal processing of specific queries,
refer to the suggestions in “Tuning for Specific Query Types” on page 11-41.
11-46 Informix Red Brick Decision Server Administrator’s Guide

A
Appendix
Example: Building a
Database
This appendix illustrates how to build a database using Aroma,
the sample database included with Red Brick Decision Server,
and includes the following sections:

■ Building the Aroma Database

■ Logging In as redbrick

■ Making the Database Directory

■ Creating the Database

■ Changing the Default Password

■ Creating the User Tables

■ Writing the LOAD DATA Statements

■ Loading the Data

■ Verifying the Database

■ Summary

Building the Aroma Database
Building the Aroma Database
This example assumes the database schema has been defined and focuses on
implementing that schema. The example uses the Aroma sample database
included with Red Brick Decision Server. Because Aroma is a relatively small
database, default segments are used for the dimension (referenced) tables,
and named segments are used for the referencing (fact) table Sales. However,
before you build production databases, perform a careful analysis of the
space requirements and the anticipated database modifications and load
patterns to determine whether to use named segments.

The basic Aroma database contains seven tables: Sales, Class, Product,
Market, Store, Promotion, and Period, as illustrated in the following figure.

For more information on the Aroma database, refer to the SQL Self-Study
Guide.

Figure A-1
Schema of Aroma Database

promokey
promo_type
promo_desc
value
start_date

Promotion

perkey
date
day
week
month
qtr

Period

perkey
classkey
prodkey
storekey
promokey
quantity

Sales

classkey
prodkey
prod_name
pkg_type

Product

storekey
mktkey
store_type
store_name
street
city
state

Store

mktkey
hq_city
hq_state
district

Market

classkey
class_type
class_desc

Class
A-2 Informix Red Brick Decision Server Administrator’s Guide

The redbrick Directory and Aroma Input Files
The redbrick Directory and Aroma Input Files
The Aroma database input files were included on the media containing Red
Brick Decision Server and should be installed on your system in the directory
redbrick_dir/sample_input on UNIX or redbrick_dir\SAMPLE_INPUT on
Windows NT, where redbrick_dir is the Red Brick Decision Server directory on
your system.

The procedures that follow assume you are going to copy the Aroma input
files from the redbrick_dir/sample_input or redbrick_dir\SAMPLE_INPUT
directory to a directory named aroma_inputs on UNIX or AROMA_INPUTS on
Windows NT, which you create in your own directory. However, you can also
use the files directly from those directories. Or you can use any editor to write
your own files from the examples shown in this appendix.

Steps for Building a Database
To build the Aroma database, follow these steps:

1. Log in as the redbrick user.

2. Make a directory for the new database. Use the operating-system
command.

3. Create the database. Use dbcreate on UNIX or rb_creator on
Windows NT.

4. Change the default password for the database. Use the RISQL Entry
Tool, GRANT statement.

5. Create the user tables for the database. Use the RISQL Entry Tool,
CREATE TABLE statements.

6. Write the LOAD DATA statements and control files for the Table
Management Utility (TMU). Use any editor.

7. Load the data into the database. Use the rb_tmu script.

8. Verify that the database was built and loaded successfully.

Each step is described in the following sections.
Example: Building a Database A-3

Logging In as redbrick
Logging In as redbrick
The redbrick user is the administrative account for Red Brick Decision Server.
You must be logged in as redbrick for the administrative tasks involved in
creating a database.

The redbrick_dir/bin directory must also be in the redbrick user’s path.

To log in as redbrick

1. Log in as the redbrick user. To ensure that permissions are set
correctly, you must be the redbrick user to build the database. If you
do not know the password, see your database administrator.

2. Verify that the redbrick_dir/bin directory is in your path.
$ env

In the list of environment variables displayed, check the entry for
PATH. Its definition should include redbrick_dir/bin. ♦

Alternately, the redbrick user or the Windows NT administrator can grant any
user execute permission for dbcreate. The redbrick_dir\BIN directory must also
be in the redbrick user’s path.

To log in as redbrick

1. Log in as the redbrick user. If you do not know the password, see your
database administrator.

2. Verify that the redbrick_dir\BIN directory is in your path.
c:\> set

In the list of environment variables displayed, check the entry for
PATH. Its definition should include redbrick_dir\BIN. ♦

UNIX

WIN NT
A-4 Informix Red Brick Decision Server Administrator’s Guide

Making the Database Directory
Making the Database Directory
Determine where you want to build the database. Then create two direc-
tories, one for the database and one for the input files, and copy the Aroma
input files. The Aroma scripts, inputs, and loaded database require about 16
megabytes of storage.

To create the database directory

1. As the redbrick user, change to the directory you have selected
(my_directory in this example).

$ cd my_directory

This will be the parent directory for your new database.

2. From the parent directory (my_directory in this example), create a
database directory named aroma_db.

$ mkdir aroma_db

3. Verify that permissions on the aroma_db directory are set correctly.
$ ls -dl aroma_db

The permissions, as a minimum, should be:
drwx------ aroma_db

which indicate that the redbrick user has read, write, and execute per-
missions. Permissions for group and other depend upon your
environment and are not important for this exercise.

4. Create a directory named aroma_inputs for the Aroma input files.
$ mkdir aroma_inputs

By keeping the input files in a separate directory, you can more easily
determine what files are created during each step.

5. Copy the Aroma files to the aroma_inputs directory.
$ cp redbrick_dir/sample_input/aroma* aroma_inputs

♦

UNIX
Example: Building a Database A-5

Making the Database Directory
To create the database directory

1. Change to the directory you have selected (my_directory in this
example).

c:\> cd my_directory

This will be the parent directory for your database.

2. From the parent directory (my_directory in this example), create a
database directory named aroma_db.

c:\> mkdir aroma_db

3. Create a directory named aroma_inputs for the Aroma input files.
c:\> mkdir aroma_inputs

By keeping the input files in a separate directory, you can more easily
determine what files are created during each step.

4. Copy the Aroma files to the aroma_inputs directory.
c:\> copy redbrick_dir\sample_input\aroma*
aroma_inputs

♦

The sample database directories and files look like this.

WIN NT

Figure A-2
Sample Database

aroma.tmu
aroma_class.txt
aroma_create.risql
aroma_deal.txt
aroma_line_items.txt
aroma_market.txt
aroma_orders.txt

aroma_period.txt
aroma_product.txt
aroma_promo.txt
aroma_sales.txt
aroma_store.txt
aroma_supplier.txt

redbrick

— sample_input on UNIX or SAMPLE_INPUT on Windows NT

my_directory

—aroma_db

—aroma_inputs
A-6 Informi
x Red Brick Decision Server A
dministrator’s Guide

Creating the Database
Creating the Database
Create the new database using the rb_creator create script on UNIX or the
dbcreate script on Windows NT. This step creates the system tables. You must
be the redbrick user to execute rb_creator or dbcreate.

To create the database

1. Verify that you are in the directory containing the database.

2. Run the create script.
$ rb_creator aroma_db

Enter a logical database name for the new database in the rbw.config
file, using any text editor. In this example, the new database is named
Newaroma.

DB NEWAROMA /my_directory/aroma_db

♦

c:>\ dbcreate -create -d aroma_db -l NEWAROMA

This creates a database with the logical name Newaroma and adds
the following line to the rbw.config file:

DB NEWAROMA c:\my_directory\aroma_db

♦
Users can access Newaroma by using the -d option on the command
line for the RISQL Entry Tool, RISQL Reporter, and the TMU. They can
omit the -d option if the RB_PATH environment variable is set to the
logical database name for the desired database.

3. Log out of the redbrick account.

Operating System Command

UNIX $ cd my_directory

Windows NT c:>\cd my_directory

UNIX

WIN NT
Example: Building a Database A-7

Changing the Default Password
The rb_creator or dbcreate script creates the database system files,
RB_DEFAULT_IDX, RB_DEFAULT_INDEXES, RB_DEFAULT_LOCKS,
RB_DEFAULTS_SEGMENTS, and RB_DEFAULT_TABLES, in the aroma_db
directory.

Exception: Newaroma counts as one of the two databases allowed by the two-
database limit for Red Brick Decision Server for Workgroups.

Changing the Default Password
Change the default password for system, the administrative account automat-
ically created for each new database, from manager to a secure password. In
this example, it is changed to cryptic.

To change the default password

1. Verify that the redbrick_dir/bin directory is in your path on UNIX or
that the redbrick_dir\bin directory is in your path on Windows NT.

2. Invoke the RISQL Entry Tool, providing the logical database name
and the default user name and password.

When you invoke the RISQL Entry Tool, the RB_CONFIG environment
variable must point to the configuration file rbw.config. For more
information, refer to the RISQL Entry Tool and RISQL Reporter User’s
Guide.

3. Change the password for the system account from manager to
cryptic.

RISQL> grant connect to system with cryptic;
RISQL>

Operating System Command

UNIX $ risql -d NEWAROMA system manager

Windows NT c:\> risql -d NEWAROMA system manager
A-8 Informix Red Brick Decision Server Administrator’s Guide

Creating the User Tables
Creating the User Tables
User tables are created by writing and executing CREATE TABLE statements,
which are based on the tables and columns defined in the database schema.
This example uses default segments, named segments, automatic indexes,
and user-created indexes; it does not use views or synonyms.

CREATE TABLE Statements
The CREATE TABLE statements for the Aroma database are in the file
aroma_create.risql. The statements for the Market, Store, Class, Product,
Promotion, Period, and Sales tables look like this.

create table market (
mktkey integer not null,
hq_city char(20),
hq_state char(20),
district char(20),
region char(20),
constraint mkt_pkc primary key (mktkey));

create table store (
storekey integer not null,
mktkey integer not null,
store_type char(10),
store_name char(30),
street char(30),
city char(20),
state char(5),
zip char (10),
constraint store_pkc primary key (storekey),
constraint store_fkc foreign key (mktkey)

references market (mktkey))
maxrows per segment 2500;

create table class (
classkey integer not null,
class_type char (12),
class_desc char(60),
primary key (classkey));

create table product (
classkey integer not null,
prodkey integer not null,
prod_name char(30),
pkg_type char(20),
constraint prod_pkc primary key (classkey, prodkey),
constraint prod_fkc foreign key (classkey)

references class (classkey))
maxrows per segment 2500;
Example: Building a Database A-9

CREATE TABLE Statements
create table promotion (
promokey integer not null,
promo_type integer not null,
promo_desc char(40),
value dec(7,2),
start_date date,
end_date date,
primary key (promokey))
maxrows per segment 2500;

create table period (
perkey integer not null,
date date,
day character(3),
week integer,
month character(5),
qtr character(5),
year integer,
primary key (perkey))
maxrows per segment 2500;

create table sales (
perkey integer not null,
classkey integer not null,
prodkey integer not null,
storekey integer not null,
promokey integer not null,
quantity integer,
dollars dec(7,2),
constraint sales_pkc primary key

(perkey, classkey, prodkey, storekey, promokey),
constraint sales_date_fkc foreign key (perkey)

references period (perkey),
constraint sales_product_fkc foreign key (classkey,

prodkey)
references product (classkey, prodkey),

constraint sales_store_fkc foreign key (storekey)
references store (storekey),

constraint sales_promo_fkc foreign key (promokey)
references promotion (promokey))

data in (daily_data1, daily_data2)
segment by values of (perkey)
ranges (min:415, 415:max)

maxsegments 2
maxrows per segment 60000;
A-10 Informix Red Brick Decision Server Administrator’s Guide

CREATE TABLE Statements
Note the following about the CREATE TABLE statements:

■ Referenced tables are defined before any tables that reference them.

■ Referenced table statements include MAXROWS PER SEGMENT
values.

■ The primary key and foreign key columns are declared NOT NULL.

■ Each column in a table has a declared data type that corresponds to
the data to be stored. Newaroma uses the following data types:

❑ CHARACTER, which contains the specified number of characters

❑ INTEGER (4 bytes)

❑ DECIMAL (7,2), with a precision of 7 and a scale of 2 (4 bytes)

❑ DATE (3 bytes)

■ The Sales table is created using named segments.

■ The other tables are all created using default segments.

For more information about planning and creating databases, refer to
Appendix 4, “Planning a Database Implementation,” and Chapter 5,
“Creating a Database.”

For a detailed description of the CREATE TABLE syntax and more information
about data types, refer to the SQL Reference Guide.

To create the user tables for Newaroma

1. To invoke the RISQL Entry Tool, enter the following command at the
system prompt:

risql -d NEWAROMA system

Provide the logical database name and user name.

2. Supply your password in response to the prompt.
(C) Copyright 1991 - 1999, Informix, Los Gatos,
California, USA
All rights reserved
RISQL Entry Tool Version 6.0 (xxxx)
Please type password:
RISQL>

Important: To maintain password security, do not enter your password on the
command line. Instead, enter it when you are prompted to do so.
Example: Building a Database A-11

CREATE TABLE Statements
3. From the RISQL Entry Tool, read and execute the statements
contained in the aroma_create.risql file.

You can also enter the statements interactively from the command
line, but it is much easier and subject to fewer errors to run them
from a file that you can edit.

The aroma_create.risql script creates tables, automatically creates pri-
mary key B-TREE indexes on the tables, creates segments for the Sales
table, drops the primary key B-TREE index on the Sales table, creates
a STAR index, and creates a TARGET index. The remaining steps in
this section show how to verify that they were built and how to
obtain additional information about the tables and indexes that you
might need later for various administrative tasks.

4. To verify that the tables were created, query the system table
RBW_TABLES. Enter a SQL statement similar to the following:

RISQL> select * from rbw_tables where id > 0;

Operating
System Command

UNIX RISQL> run
/my_directory/aroma_inputs/aroma_create.risql;

Windows NT RISQL> run
\my_directory\aroma_inputs\aroma_create.risql;
A-12 Informix Red Brick Decision Server Administrator’s Guide

CREATE TABLE Statements
If the tables were created, the response is similar to the following
(although more columns—DATETIME, SEGMENT_BY, PARTIAL and
COMMENT— will be displayed, and the lines will wrap).

Note the following about the response:

■ The system tables were excluded by specifying “ID > 0”.

■ MAXROWS PER SEGMENT and MAXSEGMENTS values are
specified for the tables in which they are defined.

RISQL> select * from rbw_tables where id > 0;
Or
RISQL> select substr(name,1,13)as NAME, type, substr(creator,1,8) as CREATOR, id
, maxsegments, maxrows_per_seg, maxsize_rows, intact from rbw_tables where id >
0;

NAME TYPE CREATOR ID MAXSEGMENTS MAXROWS_PER MAXSIZE_ROW INTA
ORDERS TABLE SYSTEM 11 1 2000 25165728 Y
SALES TABLE SYSTEM 13 2 60000 144102 Y
PERIOD TABLE SYSTEM 8 1 2500 79429329 Y
SUPPLIER TABLE SYSTEM 7 1 NULL 17825724 Y
STORE TABLE SYSTEM 2 1 2500 18612153 Y
PROMOTION TABLE SYSTEM 5 1 2500 36175734 Y
PRODUCT TABLE SYSTEM 4 1 2500 36175734 Y
LINE_ITEMS TABLE SYSTEM 12 1 2000 65011464 Y
CLASS TABLE SYSTEM 3 1 NULL 27787158 Y
MARKET TABLE SYSTEM 1 1 NULL 25165728 Y
Example: Building a Database A-13

CREATE TABLE Statements
5. To verify that the indexes were created automatically, enter the
following statement:

RISQL> select * from rbw_indexes ;

If the indexes were created, the response is similar to the following
(although more columns—DATETIME, INTACT, PARTIAL, and
COMMENT— will be displayed, and the lines might wrap).

RISQL> select * from rbw_indexes;
Or
RISQL> select substr(name,1,20) as NAME, substr(tname,1,12) as TNAME, type,
substr(cname,1,12) as COLUMN_NAME, substr(creator,1,10) as CREATOR,
fillfactor, state from rbw_indexes;
NAME TNAME TYPE COLUMN_NAME CREATOR FILLFACTOR STAT
E
MARKET_PK_IDX MARKET BTREE MKTKEY SYSTEM

100 VALID
STORE_PK_IDX STORE BTREE STOREKEY SYSTEM

100 VALID
CLASS_PK_IDX CLASS BTREE CLASSKEY SYSTEM

100 VALID
PRODUCT_PK_IDX PRODUCT BTREE CLASSKEY SYSTEM

100 VALID
PROMOTION_PK_IDX PROMOTION BTREE PROMOKEY SYSTEM

100 VALID
DEAL_PK_IDX DEAL BTREE DEALKEY SYSTEM

100 VALID
SUPPLIER_PK_IDX SUPPLIER BTREE SUPKEY SYSTEM

100 VALID
PERIOD_PK_IDX PERIOD BTREE PERKEY SYSTEM

100 VALID
ORDERS_PK_IDX ORDERS BTREE ORDER_NO SYSTEM

100 VALID
LINE_ITEMS_PK_IDX LINE_ITEMS BTREE ORDER_NO SYSTEM

100 VALID
SALES_STAR_IDX SALES STAR PERKEY SYSTEM

100 VALID
STORE_TGT_IDX STORE TARGETS STORE_TYPE SYSTEM

100 VALID
STORE_FK_IDX STORE BTREE MKTKEY SYSTEM

100 VALID
PRODUCT_FK_IDX PRODUCT BTREE CLASSKEY SYSTEM

100 VALID
ORDERS_FK1_IDX ORDERS BTREE PERKEY SYSTEM

100 VALID
ORDERS_FK2_IDX ORDERS BTREE SUPKEY SYSTEM

100 VALID
ORDERS_FK3_IDX ORDERS BTREE DEALKEY SYSTEM

100 VALID
LINE_ITEMS_STAR_IDX LINE_ITEMS STAR ORDER_NO SYSTEM 100 VAL
ID
A-14 Informix Red Brick Decision Server Administrator’s Guide

CREATE TABLE Statements
Note the following points about the indexes:

■ The primary key B-TREE indexes are created automatically when
the tables are created.

■ The other indexes are created with CREATE INDEX statements,
which are included in the aroma_create.risql file.

■ Index types: Each table has a B-TREE index on its primary key,
except for the Sales table. (The aroma_create.risql file dropped the
primary key index on the Sales table.) The Sales table has a STAR
index on its foreign keys. The Store table has a TARGET index on
the Store_Type column.

6. Look at the database directory to see what files were created.

The exclamation mark (!) is an escape to the system shell on UNIX or
to the MS-DOS shell on Windows NT. You should see a list similar to
the following:

RB_DEFAULT_IDX dfltseg18_psu1 dfltseg31_ps
u1
RB_DEFAULT_INDEXES dfltseg19_psu1 dfltseg32_ps
u1
RB_DEFAULT_LOCKS dfltseg1_psu1 dfltseg3_psu
1
RB_DEFAULT_SEGMENTS dfltseg20_psu1 dfltseg4_psu
1
RB_DEFAULT_TABLES dfltseg21_psu1 dfltseg5_psu
1
dfltseg10_psu1 dfltseg22_psu1 dfltseg6_psu
1
dfltseg11_psu1 dfltseg23_psu1 dfltseg7_psu
1
dfltseg12_psu1 dfltseg24_psu1 dfltseg8_psu
1
dfltseg13_psu1 dfltseg25_psu1 dfltseg9_psu
1
dfltseg14_psu1 dfltseg26_psu1 sales_psu1
dfltseg15_psu1 dfltseg27_psu1 sales_psu2
dfltseg16_psu1 dfltseg28_psu1 sales_psu3
dfltseg17_psu1 dfltseg2_psu1 sales_psu4

Operating
System Command

UNIX RISQL>!ls /my_directory/aroma_db ;

Windows NT RISQL>!dir /w \my_directory\aroma_db ;
Example: Building a Database A-15

CREATE TABLE Statements
If you do not use default segments for the tables and indexes, the
PSUs are in the locations that the CREATE SEGMENT statements spec-
ify (or in default directories that the rbw.config file specifies). The
PSUs for the Sales table are also in this directory. The CREATE
SEGMENT statements (in the aroma_create.risql file) specify that the
segments be created in the directory from which the script is run.

7. You can determine the table or index to which each segment belongs.
RISQL> select name, tname, iname, NPSUS from
rbw_segments;

The response is similar to the following (although the lines might
wrap).

RISQL> select name, tname, iname, npsus from rbw_segments;
Or
RISQL> select substr(name, 1,20) as name, substr(tname,1,17) as tname,
substr(iname, 1,22) as iname, NPSUS from rbw_segments;
NAME TNAME INAME NPSUS
RBW_SYSTEM NULL NULL 5
DEFAULT_SEGMENT_1 MARKET NULL 1
DEFAULT_SEGMENT_2 MARKET MARKET_PK_IDX 1
DEFAULT_SEGMENT_3 STORE NULL 1
DEFAULT_SEGMENT_4 STORE STORE_PK_IDX 1
DEFAULT_SEGMENT_5 CLASS NULL 1
DEFAULT_SEGMENT_6 CLASS CLASS_PK_IDX 1
DEFAULT_SEGMENT_7 PRODUCT NULL 1
DEFAULT_SEGMENT_8 PRODUCT PRODUCT_PK_IDX 1
DEFAULT_SEGMENT_9 PROMOTION NULL 1
DEFAULT_SEGMENT_10 PROMOTION PROMOTION_PK_IDX 1
DEFAULT_SEGMENT_11 DEAL NULL 1
DEFAULT_SEGMENT_12 DEAL DEAL_PK_IDX 1
DEFAULT_SEGMENT_13 SUPPLIER NULL 1
DEFAULT_SEGMENT_14 SUPPLIER SUPPLIER_PK_IDX 1
DEFAULT_SEGMENT_15 PERIOD NULL 1
DEFAULT_SEGMENT_16 PERIOD PERIOD_PK_IDX 1
DEFAULT_SEGMENT_17 ORDERS NULL 1
DEFAULT_SEGMENT_18 ORDERS ORDERS_PK_IDX 1
DEFAULT_SEGMENT_19 LINE_ITEMS NULL 1
DEFAULT_SEGMENT_20 LINE_ITEMS LINE_ITEMS_PK_IDX 1
DAILY_DATA1 SALES NULL 2
DAILY_DATA2 SALES NULL 2
DEFAULT_SEGMENT_23 SALES SALES_STAR_IDX 1
DEFAULT_SEGMENT_24 STORE STORE_TGT_IDX 1
DEFAULT_SEGMENT_25 STORE STORE_FK_IDX 1
DEFAULT_SEGMENT_26 PRODUCT PRODUCT_FK_IDX 1
DEFAULT_SEGMENT_27 ORDERS ORDERS_FK1_IDX 1
DEFAULT_SEGMENT_28 ORDERS ORDERS_FK2_IDX 1
DEFAULT_SEGMENT_29 ORDERS ORDERS_FK3_IDX 1
DEFAULT_SEGMENT_30 LINE_ITEMS LINE_ITEMS_STAR_IDX 1
RISQL>
A-16 Informix Red Brick Decision Server Administrator’s Guide

Writing the LOAD DATA Statements
Note the following points about segments:

■ Segment names: Default segments are used for all the tables
except the Sales table. The system automatically assigns the
numeric suffixes on these name The CREATE SEGMENT and
CREATE TABLE statements specify the segments for the Sales
table.

■ The RBW_STORAGE system table contains additional infor-
mation about each PSU.

Writing the LOAD DATA Statements
The Table Management Utility (TMU) uses LOAD DATA statements to map
the input data from the input record fields to the corresponding table
columns. Each table requires its own LOAD DATA statement, based on the
input file and record formats and the table definitions. This example assumes
all input data is in operating-system 5disk (not tape) files.

A single control file can contain multiple LOAD DATA statements, or each
statement can be in a separate file. The LOAD DATA statements for each table
in Aroma are in a single file named aroma.tmu.

This section displays both the data and the CREATE TABLE statements,
followed by the LOAD DATA statements for the Period, Product, Market, and
Sales tables in Newaroma. You can use the LOAD DATA statements provided,
so you do not need to write them. Just look at them to see how they were
derived from the input data and the CREATE TABLE statements.

The Period Table
Input data records for the Period table (in the file aroma_period.txt) look like
this:

1*1998-01-01*SA*1*JAN*Q1_98*1998
2*1998-01-02*SU*2*JAN*Q1_98*1998
3*1998-01-03*MO*2*JAN*Q1_98*1998
4*1998-01-04*TU*2*JAN*Q1_98*1998
5*1998-01-05*WE*2*JAN*Q1_98*1998
6*1998-01-06*TH*2*JAN*Q1_98*1998
7*1998-01-07*FR*2*JAN*Q1_98*1998
8*1998-01-08*SA*2*JAN*Q1_98*1998
Example: Building a Database A-17

The Period Table
9*1998-01-09*SU*3*JAN*Q1_98*1998
10*1998-01-10*MO*3*JAN*Q1_98*1998
11*1998-01-11*TU*3*JAN*Q1_98*1998
12*1998-01-12*WE*3*JAN*Q1_98*1998
13*1998-01-13*TH*3*JAN*Q1_98*1998
14*1998-01-14*FR*3*JAN*Q1_98*1998
15*1998-01-15*SA*3*JAN*Q1_98*1998
16*1998-01-16*SU*4*JAN*Q1_98*1998
...

This is only a partial list of the input records.

This input data is stored in the Period table that the following CREATE TABLE
statement defines:

create table period (
perkey integer not null,
date date,
day character(3),
week integer,
month character(5),
qtr character(5),
year integer,
primary key (perkey))
maxrows per segment 2500;

The LOAD DATA statement that reads each input data record and maps each
field in the record to a column in the corresponding row in the Period table
looks like this.

load data inputfile ’aroma_period.txt’
replace
format separated by ’*’
into table period (

perkey integer external (4),
date date ’YYYY-MM-DD’,
day char(3),
week integer external (4),
month char(5),
qtr char(5),
year integer external);

Note the following about the LOAD DATA statement for the Period table:

■ The records use a separated format with an asterisk (*) separator.

■ The load operation is performed in REPLACE mode. Any existing
data in the table is destroyed.

■ The first field has the fieldtype “integer external,” is 4 characters
long, and is to be stored in the Period table column named Perkey.
A-18 Informix Red Brick Decision Server Administrator’s Guide

The Product Table
■ The second field has the field type “date” and has a format mask that
specifies four digits for year and two digits for month and day. A
dash (—) separates subfields.

■ The third field has the field type “character,” is 3 characters long, and
is to be stored in the Period table column named Day.

The Product Table
Input data records for the Product table (in the file aroma_product.txt) look like
this.

1:00:Veracruzano :No pkg
1:01:Xalapa Lapa :No pkg
1:10:Colombiano :No pkg
1:11:Expresso XO :No pkg
1:12:La Antigua :No pkg
1:20:Lotta Latte :No pkg
1:21:Cafe Au Lait:No pkg
1:22:NA Lite :No pkg
1:30:Aroma Roma :No pkg
1:31:Demitasse Ms:No pkg
2:00:Darjeeling Number 1 :No pkg
2:01:Darjeeling Special :No pkg
2:10:Assam Grade A :No pkg
2:11:Assam Gold Blend :No pkg
2:12:Earl Grey:No pkg

This is only a partial list of the input records.

This data is stored in the Product table that the following CREATE TABLE
statement defines:

create table product (
classkey integer not null,
prodkey integer not null,
prod_name char(30),
pkg_type char(20),
constraint prod_pkc primary key (classkey, prodkey),
constraint prod_fkc foreign key (classkey)

references class (classkey))
maxrows per segment 2500;
Example: Building a Database A-19

The Market Table
The LOAD DATA statement that reads each input data record and maps each
field in the record to a column in the corresponding row in the Product table
looks like this.

load data
inputfile ’aroma_product.txt’
replace
format separated by ’:’
discardfile ’product.discards’
discards 1
into table product (

classkey integer external(2),
prodkey integer external(2),
prod_name char(30),
pkg_type char(20)) ;

Note the following about the LOAD DATA statement for the Product table:

■ These data records use a separated format with a colon (:) separator.

■ Discards are written to a file named product.discards. If a single record
is discarded, the TMU terminates.

■ Only character and external data types are present. Although a
length parameter is specified for each field, it is ignored with
separated-format records.

The Market Table
Input data records for the Market table (in the file aroma_market.txt) look like
this.

01*Atlanta*GA*Atlanta*South
02*Miami*FL*Atlanta*South
03*New Orleans*LA*New Orleans*South
04*Houston*TX*New Orleans*South
05*New York*NY*New York*North
06*Philadelphia*PA*New York*North
07*Boston*MA*Boston*North
08*Hartford*CT*Boston*North
09*Chicago*IL*Chicago*Central
10*Detroit*MI*Chicago*Central
11*Minneapolis*MN*Minneapolis*Central
12*Milwaukee*WI*Minneapolis*Central
14*San Jose*CA*San Francisco*West
15*San Francisco*CA*San Francisco*West
16*Oakland*CA*San Francisco*West
17*Los Angeles*CA*Los Angeles*West
19*Phoenix*AZ*Los Angeles*West
A-20 Informix Red Brick Decision Server Administrator’s Guide

The Market Table
This is only a partial list of the input records.

This data is stored in the Market table that the following CREATE TABLE
statement defines:

create table market (
mktkey integer not null,
hq_city char(20),
hq_state char(20),
district char(20),
region char(20),
constraint mkt_pkc primary key (mktkey));

The LOAD DATA statement that reads each input data record and maps each
field in the record into a column in the corresponding row in the Market table
looks like this.

load data
inputfile ’aroma_market.txt’
replace
format separated by ’*’
discardfile ’market.discards’
discards 1
into table market (

mktkey integer external(2),
hq_city char(20),
hq_state char(2),
district char(13),
region char(7)) ;

Note the following about the LOAD DATA statement for the Market table. No
RECORDLEN clause is specified, which allows the TMU to handle the
variable-length records with newline-separated data.
Example: Building a Database A-21

The Sales Table
The Sales Table
The input data records for the Sales table (in the file aroma_sales.txt) look like
this.

This is only a partial list of the input records.

This input data is stored in the Sales table that the following CREATE TABLE
statement defines:

create table sales (
perkey integer not null,
classkey integer not null,
prodkey integer not null,
storekey integer not null,
promokey integer not null,
quantity integer,
dollars dec(7,2),
constraint sales_pkc primary key

(perkey, classkey, prodkey, storekey, promokey),
constraint sales_date_fkc foreign key (perkey)

references period (perkey),
constraint sales_product_fkc foreign key (classkey,

prodkey)
references product (classkey, prodkey),

constraint sales_store_fkc foreign key (storekey)
references store (storekey),

constraint sales_promo_fkc foreign key (promokey)

00000000002 00000000002 00000000000 00000000001 00000000116 00000000008 000000034.00
00000000002 00000000004 00000000012 00000000001 00000000116 00000000009 000000060.75
00000000002 00000000001 00000000011 00000000001 00000000116 00000000040 000000270.00
00000000002 00000000002 00000000030 00000000001 00000000116 00000000016 000000036.00
00000000002 00000000005 00000000022 00000000001 00000000116 00000000011 000000030.25
00000000002 00000000001 00000000030 00000000001 00000000116 00000000030 000000187.50
00000000002 00000000001 00000000010 00000000001 00000000116 00000000025 000000143.75
00000000002 00000000004 00000000010 00000000002 00000000000 00000000012 000000087.00
00000000002 00000000004 00000000011 00000000002 00000000000 00000000014 000000115.50
00000000002 00000000002 00000000022 00000000002 00000000000 00000000018 000000058.50
00000000002 00000000004 00000000000 00000000002 00000000000 00000000017 000000136.00
00000000002 00000000005 00000000000 00000000002 00000000000 00000000013 000000074.75
00000000002 00000000004 00000000030 00000000002 00000000000 00000000014 000000101.50
00000000002 00000000002 00000000010 00000000002 00000000000 00000000018 000000063.00
00000000002 00000000001 00000000022 00000000003 00000000000 00000000011 000000099.00
00000000002 00000000006 00000000046 00000000003 00000000000 00000000006 000000036.00
00000000002 00000000005 00000000012 00000000003 00000000000 00000000010 000000040.00
A-22 Informix Red Brick Decision Server Administrator’s Guide

The Sales Table
references promotion (promokey))
data in (daily_data1, daily_data2)

segment by values of (perkey)
ranges (min:415, 415:max)

maxsegments 2
maxrows per segment 60000;

The LOAD DATA statement that reads each input data record and maps each
field in the recordto a column in the corresponding row in the Sales table
looks like this.

load data inputfile ’aroma_sales.txt’
recordlen 86
insert
into table sales (

perkey position(2) integer external(11) nullif(1)=’%’,
classkey position(14) integer external(11) nullif(13)=’

%’,
prodkey position(26) integer external(11) nullif(25)=’%

’,
storekey position(38) integer external(11) nullif(37)=’

%’,
promokey position(50) integer external(11) nullif(49)=’

%’,
quantity position(62) integer external(11) nullif(61)=’

%’,
dollars position(74) decimal external(12) nullif(73)=’%

’);

Note the following about the Sales table:

■ These input data records are in fixed-format records: The position of
each field is specified by a POSITION clause, and there are no
separators.

■ The RECORDLEN clause is specified, which fixes these records to the
length 86. The total length of the individual fields
(11+11+11+11+11+11+12) plus 1 character for each NULLIF
(1+1+1+1+1+1+1) plus the newline character equals the record
length (86).
Example: Building a Database A-23

Loading the Data
Loading the Data
To load the Newaroma data, run the TMU with the control file that contains
the LOAD DATA statements. In this database, all the LOAD DATA statements
are combined into a single control file named aroma.tmu. The portions of that
file for the Period, Product, Market, and Sales table look like this.

load data inputfile ’aroma_period.txt’
replace
format separated by ’*’
into table period (

perkey integer external (4),
date date ’YYYY-MM-DD’,
day char(3),
week integer external (4),
month char(5),
qtr char(5),
year integer external);

load data
inputfile ’aroma_product.txt’
replace
format separated by ’:’
discardfile ’product.discards’
discards 1
into table product (

classkey integer external(2),
prodkey integer external(2),
prod_name char(30),
pkg_type char(20)) ;

load data
inputfile ’aroma_market.txt’
replace
format separated by ’*’
discardfile ’market.discards’
discards 1
into table market (

mktkey integer external(2),
hq_city char(20),
hq_state char(2),
district char(13),
region char(7)) ;

load data inputfile ’aroma_sales.txt’
recordlen 86
insert
into table sales (

perkey position(2) integer external(11) nullif(1)=’%’,
classkey position(14) integer external(11)

nullif(13)=’%’,
A-24 Informix Red Brick Decision Server Administrator’s Guide

Loading the Data
prodkey position(26) integer external(11)
nullif(25)=’%’,

storekey position(38) integer external(11)
nullif(37)=’%’,

promokey position(50) integer external(11)
nullif(49)=’%’,

quantity position(62) integer external(11)
nullif(61)=’%’,

dollars position(74) decimal external(12)
nullif(73)=’%’);

Note the following about the LOAD DATA statements and the control file:

■ The input file name must be relative to the directory from which you
invoke the TMU, or it must be a full pathname.

■ The referenced (dimension) tables (Period, Product, and Market)
must be loaded before the referencing (fact) table (Sales).

To load the data into the aroma_db database

1. Log in as the redbrick user.

2. Verify that the directory redbrick_dir/bin on UNIX or redbrick_dir\BIN
on Windows NT is in your path.

3. Change to the aroma_inputs directory, which contains the aroma.tmu
file with the LOAD DATA statements for all the tables in the Aroma
database.

4. Run the TMU.

The TMU responds with messages similar to the following.

Operating
System Command

UNIX $ rb_tmu -d /my_directory/aroma_db aroma.tmu
system cryptic

Windows NT c:\> rb_tmu -d \my_directory\aroma_db aroma.tmu
system cryptic
Example: Building a Database A-25

Loading the Data
(C) Copyright 1991-1999 Informix Software,Inc.
All rights reserved.
Version 6.0.1(0)TST
** INFORMATION ** (366) Loading table MARKET.
** WARNING ** (8023) Any existing rows in tables that reference table MARKET may now be invalid.
** INFORMATION ** (315) Finished file aroma_market.txt. 17 rows read from this file.
** INFORMATION ** (367) Rows: 17 inserted. 0 updated. 0 discarded. 0 skipped.
** INFORMATION ** (500) Time = 00:00:00.05 cp time, 00:00:00.59 time, Logical IO count=90, Blk Reads=5,
Blk Writes=29
** INFORMATION ** (366) Loading table PRODUCT.
** WARNING ** (8023) Any existing rows in tables that reference table PRODUCT may now be invalid.
** INFORMATION ** (315) Finished file aroma_product.txt. 59 rows read from this file.
** INFORMATION ** (367) Rows: 59 inserted. 0 updated. 0 discarded. 0 skipped.
** INFORMATION ** (500) Time = 00:00:00.05 cp time, 00:00:00.81 time, Logical IO count=125, Blk Reads=1,
Blk Writes=48
** INFORMATION ** (366) Loading table PROMOTION.
** WARNING ** (8023) Any existing rows in tables that reference table PROMOTION may now be invalid.
** INFORMATION ** (352) Row 102 of index PROMOTION_PK_IDX is out of sequence. Switching to standard
optimized index building. Loading continues...
** INFORMATION ** (315) Finished file aroma_promo.txt. 194 rows read from this file.
** INFORMATION ** (513) Starting merge phase of index building PROMOTION_PK_IDX.
** INFORMATION ** (367) Rows: 194 inserted. 0 updated. 0 discarded. 0 skipped.
** INFORMATION ** (500) Time = 00:00:00.37 cp time, 00:00:00.90 time, Logical IO count=76, Blk Reads=3,
Blk Writes=36
** INFORMATION ** (366) Loading table PERIOD.
** WARNING ** (8023) Any existing rows in tables that reference table PERIOD may now be invalid.
** INFORMATION ** (315) Finished file aroma_period.txt. 821 rows read from this file.
** INFORMATION ** (367) Rows: 821 inserted. 0 updated. 0 discarded. 0 skipped.
** INFORMATION ** (500) Time = 00:00:00.05 cp time, 00:00:00.63 time, Logical IO count=87, Blk Reads=4,
Blk Writes=38
** INFORMATION ** (366) Loading table SALES.
** INFORMATION ** (352) Row 3 of index SALES_STAR_IDX is out of sequence. Switching to standard optimized
index building. Loading continues...
** INFORMATION ** (315) Finished file aroma_sales.txt. 69941 rows read from this file.
** INFORMATION ** (513) Starting merge phase of index building SALES_STAR_IDX.
** INFORMATION ** (367) Rows: 69941 inserted. 0 updated. 0 discarded. 0 skipped.
** INFORMATION ** (500) Time = 00:00:03.97 cp time, 00:00:08.63 time, Logical IO count=755, Blk
Reads=736, Blk Writes=699
A-26 Informix Red Brick Decision Server Administrator’s Guide

Verifying the Database
Note the following about the messages from the TMU:

■ For each table, the TMU information reports the number of rows from
the input file, which are categorized as inserted, updated, discarded,
or skipped for the table. In this case, all rows were inserted.

■ All tables were loaded, including the other tables in the Aroma
database. The messages for the Promotion and Sales table indicate
that as their indexes were built, the TMU detected out-of-order data
and switched to the mode called “standard optimized mode” to
continue building the indexes. The input data is ordered with respect
to the STAR index on the Sales table, based on the order of its leading
foreign key reference; it is unordered with respect to the foreign key
references of the other tables.

If you want other users to access this database, you must provide them
database access with the GRANT command. Also define the database with a
logical name in the rbw.config file to simplify database selection.

Verifying the Database
To verify that the tables were built, enter a simple SELECT statement.

RISQL> select * from product where classkey = 1;

If the data is loaded correctly, the response is similar to this.

RISQL> select * from product where classkey = 1;
CLASSKEY PRODKEY PROD_NAME PKG_TYPE
 1 0 Veracruzano No pkg
 1 1 Xalapa Lapa No pkg
 1 10 Colombiano No pkg
 1 11 Expresso XO No pkg
 1 12 La Antigua No pkg
 1 20 Lotta Latte No pkg
 1 21 Cafe Au Lait No pkg
 1 22 NA Lite No pkg
 1 30 Aroma Roma No pkg
 1 31 Demitasse Ms No pkg
RISQL>
Example: Building a Database A-27

Summary
Summary
To summarize the steps in building a database:

1. Determine the tables needed for the database and the columns and
data types for each table.

2. Log in as the redbrick user and create the database with rb_creator on
UNIX or dbcreate on Windows NT. Add the logical database name to
the rbw.config file.

3. Create the tables and indexes using SQL CREATE statements.

4. Review the format of the input data (if it already exists).

5. Write the LOAD DATA statements to map the external data represen-
tation to the internal format. You can then combine these LOAD
DATA statements in a single TMU control file or run them
individually.

6. As the redbrick user, load the data with the rb_tmu and the control
file(s).

7. Grant access to users.
A-28 Informix Red Brick Decision Server Administrator’s Guide

B
Appendix
Configuration File
When Red Brick Decision Server is installed as directed in the
Installation and Configuration Guide, the installation procedure
creates a configuration file named rbw.config in the redbrick
directory.

This appendix provides reference information for the configu-
ration file and includes the following sections:

■ Sample rbw.config File

■ Description of File Elements

■ Summary of Configuration Parameters

Sample rbw.config File
Sample rbw.config File
The rbw.config file contains the following types of information:

■ Site-specific configuration information based on answers to
questions asked during the installation procedure

■ Option parameters that affect server behavior

■ License keys for server options

■ Tuning parameters that affect server performance

■ Logging parameters that affect logging activities

■ Password parameters that set rules for user passwords

■ Logical database names and database locations

Many of these parameters can also be set with SQL SET statements or with
TMU control statements.

The following example shows rbw.config files on UNIX and Windows NT for
the Red Brick Decision Server, also known as Red Brick Warehouse.
Although your file will vary from the one shown here, this example is typical
of a newly installed file. This file is initially built by the installation script, but
it can be modified by the database administrator. Values indicated as <value>
will be replaced in the rbw.config file at your site by the actual value. For
Windows NT, replace / with \ and /tmp with c:\temp.

For information on modifying the configuration file, refer to “Modifying the
Configuration File” on page 9-45. For descriptions of each file element, refer
to “Description of File Elements” on page B-11.

##
###
(C) Copyright 1991-1999 Informix Software, Inc. All rights reserved.
#
Red Brick Warehouse Version 6.0.1
#
#
This file contains various parameters for the Red Brick Warehouse Daemon
(rbwapid), Server (rbwsvr), and Table Management Utilities (rb_tmu
and rb_ptmu)
#♦
This file contains various parameters for the Red Brick Warehouse Service.
(rbwapid, rbwadmd, rbwlogd, rbwsvr threads), and Table Management Utility
(rb_tmu)
#♦

UNIX

WIN NT
B-2 Informix Red Brick Decision Server Administrator’s Guide

Sample rbw.config File
#
The notation {ON | OFF} means use either ON, or OFF, etc.
The default is the first option shown
#
This config file was created by user: <redbrick>
#♦
##
###
The following is used for IPC key values. Note that for shared memory
and semaphores, the key values will range from the IPC key number to
IPC key + MAX_SERVERS.
<RB_HOST_NAME> SHMEM 100
The following is used to specify the communication port for connections
to the Red Brick Warehouse rbwapid daemon.
<RB_HOST_NAME> SERVER <host>:<port_number>
♦
The following value controls the maximum number of concurrent Red Brick
Warehouse sessions that can be started by the rbwapid daemon.
RBWAPI MAX_SERVERS $num_users

Daemon Start-up user exit script for cleaning up spill files.
RBWAPI CLEANUP_SCRIPT <redbrick_dir>/bin/rb_sample.cleanup

Unified Logon for Windows NT
#RBWAPI UNIFIED_LOGON {OFF | ON}
♦

The following value can be used to specify the location of the Red Brick
Warehouse server image
RBWAPI SERVER_NAME <redbrick_dir>/bin/rbwsvr
♦

The following value indicates the maximum size of the logfile.
Once the daemon writes this many lines into the file, it will rename
it to rbwapid.log_old and a new logfile will be started.
RBWAPI LOGFILE_SIZE 1000

Process checker daemon checking interval (secs)
#RBWAPI PROCESS_CHECKING_INTERVAL 5

The maximum number of active databases
#RBWAPI MAX_ACTIVE_DATABASES 30

Message base details (location and language)
NLS_LOCALE MESSAGE_DIR <redbrick_dir>/message_dir
NLS_LOCALE LOCALE <redbrick_dir>/locale

First day of the week. 1=Sunday, 2=Monday, ... 7=Saturday
Use this to override the default first day of the week.
#NLS_LOCALE FIRST_DAYOFWEEK <1-7>

Server Monitor daemon sampling interval (secs)
RBWMON INTERVAL 120
♦

UNIX

UNIX

WIN NT

UNIX

UNIX
Configuration File B-3

Sample rbw.config File
Automatic referenced table row generation
#OPTION AUTOROWGEN {OFF | ON}

Divide by zero control
#OPTION ARITHABORT {ON | OFF}

Deadlock control
#OPTION ALLOW_POSSIBLE_DEADLOCK {OFF | ON}

Enable cross join
#OPTION CROSS_JOIN {OFF | ON }

Datatype for COUNT function
#OPTION COUNT_RESULT {INTEGER | DECIMAL | DEC | INT}

Check index/table report file permissions
#OPTION CHECK_REPORT_FILE_PERMISSIONS {SERVER_OWNER | SERVER_GROUP | ALL}

Temporary Table creation authorization
#OPTION GRANT_TEMP_RESOURCE_TO_ALL {ON | OFF}

Generate log records for Advisor?
#OPTION ADVISOR_LOGGING {ON | ON_WITH_CORR_SUB | OFF}

Assume all precomputed views have been accessed uniformly?
#OPTION UNIFORM_PROBABILITY_FOR_ADVISOR {OFF | ON}

Automatically rewrite queries using available precomputed views?
#OPTION PRECOMPUTED_VIEW_QUERY_REWRITE {ON | OFF}

Automatically invalidate precomputed views upon base table data change?
#OPTION AUTO_INVALIDATE_PRECOMPUTED_VIEW {ON | OFF}

Use invalid precomputed views when rewriting queries?
#OPTION USE_INVALID_PRECOMPUTED_VIEWS {OFF | ON}

Start DML statement as versioning transaction
#OPTION VERSIONING {OFF | ON}

The isolation level when accquiring locks for DML statement
#OPTION TRANSACTION_ISOLATION_LEVEL {SERIALIZABLE | REPEATABLE_READ}

Start TMU operation as versioning transaction
#OPTION TMU_VERSIONING {OFF | ON}

EXPORT default directory
#OPTION EXPORT_DEFAULT_PATH /tmp

Bytes per data file for EXPORT command
#OPTION EXPORT_MAX_FILE_SIZE 1K
B-4 Informix Red Brick Decision Server Administrator’s Guide

Sample rbw.config File
###
Name of the web user
###
#OPTION WEB_USER_NAME xxxxxxxxxxx

###
#
LICENSE KEY section
#
###
Red Brick Warehouse License
#LICENSE_KEY RED_BRICK_WAREHOUSE xxxxxxxxx

Red Brick Warehouse License for 10 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_10 xxxxxxxxx

Red Brick Warehouse License for 25 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_25 xxxxxxxxx

Red Brick Warehouse License for 50 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_50 xxxxxxxxx

Red Brick Warehouse License for 75 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_75 xxxxxxxxx

Red Brick Warehouse License for 100 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_100 xxxxxxxxx

Red Brick Warehouse License for 150 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_150 xxxxxxxxx

Red Brick Warehouse License for 200 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_200 xxxxxxxxx

Red Brick License for 250 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_250 xxxxxxxxx

Red Brick Warehouse License for 500 users
#LICENSE_KEY RED_BRICK_WAREHOUSE_500 xxxxxxxxx

Red Brick Warehouse for Workgroups 30 user License
#LICENSE_KEY RED_BRICK_WAREHOUSE_FOR_WORKGROUPS_30 xxxxxxxxx

Red Brick Warehouse for Workgroups 20 user License
#LICENSE_KEY RED_BRICK_WAREHOUSE_FOR_WORKGROUPS_20 xxxxxxxxx

Red Brick Warehouse for Workgroups 10 user License
#LICENSE_KEY RED_BRICK_WAREHOUSE_FOR_WORKGROUPS_10 xxxxxxxxx

Red Brick Warehouse for Workgroups 5 user License
#LICENSE_KEY RED_BRICK_WAREHOUSE_FOR_WORKGROUPS_5 xxxxxxxxx

Red Brick Warehouse for Web user connections for 5 user License
#LICENSE_KEY WEB_CONNECTIONS_5 xxxxxxxxx
Configuration File B-5

Sample rbw.config File
Red Brick Warehouse for Web user connections for 10 user License
#LICENSE_KEY WEB_CONNECTIONS_10 xxxxxxxxx

Red Brick Warehouse for Web user connections for 20 user License
#LICENSE_KEY WEB_CONNECTIONS_20 xxxxxxxxx

Red Brick Warehouse for Web user connections for 30 user License
#LICENSE_KEY WEB_CONNECTIONS_30 xxxxxxxxx

Red Brick Warehouse for Web user connections for 50 user License
#LICENSE_KEY WEB_CONNECTIONS_50 xxxxxxxxx

Red Brick Warehouse for Web user connections for 75 user License
#LICENSE_KEY WEB_CONNECTIONS_75 xxxxxxxxx

Red Brick Warehouse for Web user connections for 100 user License
#LICENSE_KEY WEB_CONNECTIONS_100 xxxxxxxxx

Red Brick Warehouse for Web user connections for 150 user License
#LICENSE_KEY WEB_CONNECTIONS_150 xxxxxxxxx

Red Brick Warehouse for Web user connections for 250 user License
#LICENSE_KEY WEB_CONNECTIONS_250 xxxxxxxxx

Red Brick Warehouse for Web user connections for 500 user License
#LICENSE_KEY WEB_CONNECTIONS_500 xxxxxxxxx

Red Brick Warehouse for Web user connections for unlimited user License
#LICENSE_KEY WEB_CONNECTIONS_UNLIMITED xxxxxxxxx

Auto Aggregate License
#LICENSE_KEY AUTO_AGGREGATE xxxxxxxxx

Backup & Restore License
#LICENSE_KEY BACKUP_RESTORE xxxxxxxxx

Parallel Table Management Utility License
#LICENSE_KEY PTMU_OPTION xxxxxxxxx

Workgroups Parallel Option License
#LICENSE_KEY WORKGROUPS_PARALLEL_OPTION xxxxxxxxx

Red Brick Data Mine License
#LICENSE_KEY RED_BRICK_DATA_MINE xxxxxxxxx

Unlimited SQL BackTrack license
#LICENSE_KEY SQL_BACKTRACK_UNLIMITED xxxxxxxxx

SQL BackTrack license for Workgroups
#LICENSE_KEY SQL_BACKTRACK_FOR_WORKGROUPS xxxxxxxxx

Vista license key
#LICENSE_KEY RED_BRICK_VISTA xxxxxxxxx
B-6 Informix Red Brick Decision Server Administrator’s Guide

Sample rbw.config File
###
#
TUNE section: Optional tuning & performance parameters
#
###
Number of TMU Buffer cache pages
#TUNE TMU_BUFFERS 128

Tuning parameter for parallel query
#TUNE ROWS_PER_SCAN_TASK 2147483647
#TUNE ROWS_PER_FETCH_TASK 2147483647
#TUNE ROWS_PER_JOIN_TASK 2147483647
#TUNE QUERYPROCS 0
#TUNE TOTALQUERYPROCS 0

#TUNE FORCE_SCAN_TASKS {OFF | <num_tasks>}
#TUNE FORCE_FETCH_TASKS {OFF | <num_tasks>}
#TUNE FORCE_JOIN_TASKS {OFF | <num_tasks>}

Define physical disk groups -- the default is
each PSU is in its own file group
#TUNE FILE_GROUP 1 <path1>
#TUNE FILE_GROUP 1 <path2>
#TUNE FILE_GROUP 2 <path3>
Maximum amount of parallelism to use on a specific file group
#TUNE GROUP 1 1
#TUNE GROUP 2 1

Tuning parameter for parallel hybrid hash joins
#TUNE FORCE_HASHJOIN_TASKS {OFF | <num_tasks>}

Enable parallelism for hybrid hash joins
#TUNE PARALLEL_HASHJOIN {ON | OFF}

Tuning parameter for parallel aggregation partitioned by GROUP BY columns
#TUNE FORCE_AGGREGATION_TASKS {OFF | <num_tasks>}

Enable parallelism for aggregation partitioned by the GROUP BY columns
#TUNE PARTITIONED_PARALLEL_AGGREGATION {ON | OFF}

Result buffer configuration
#TUNE RESULT_BUFFER {UNLIMITED | <value>{K|M|G}}
#TUNE RESULT_BUFFER_FULL_ACTION {PAUSE | ABORT}

Index Fillfactor parameters
#FILLFACTOR PI 100
#FILLFACTOR STAR 100
#FILLFACTOR SI 100

#VARCHAR fillfactor parameters
#FILLFACTOR VARCHAR 10

Optimized index build parameter
#OPTION TMU_OPTIMIZE {OFF | ON}
Configuration File B-7

Sample rbw.config File
Index Temporary Space parameters
Always specify THRESHOLD before MAXFILESIZE in this
configuration file
Specify multiple DIRECTORYs by having multiple
TUNE INDEX_TEMPSPACE_DIRECTORY entries
#TUNE INDEX_TEMPSPACE_THRESHOLD 10M
#TUNE INDEX_TEMPSPACE_MAXSPILLSIZE 1G
#TUNE INDEX_TEMPSPACE_DIRECTORY /tmp

Query Temporary Space parameters
Always specify QUERY_MEMORY_LIMIT before
QUERY_TEMPSPACE_MAXSPILLSIZE in this configuration file
Specify multiple DIRECTORYs by having multiple
TUNE QUERY_TEMPSPACE_DIRECTORY entries
#TUNE QUERY_MEMORY_LIMIT 50M
#TUNE QUERY_TEMPSPACE_MAXSPILLSIZE 1G
#TUNE QUERY_TEMPSPACE_DIRECTORY /tmp

###
#
DEFAULT section
#
###
Max # of rows to return on an unconstrained query (
#DEFAULT ROWCOUNT 0

Max # of INFORMATION & STATISTICS messages to return
for one operation.
#DEFAULT INFO_MESSAGE_LIMIT 1000

retained by RB_DEFAULT_LOADINFO
#DEFAULT RBW_LOADINFO_LIMIT 256

###
#
SEGMENTS section
#
Do NOT set default_data_segment or default_index_segment
if you have multiple databases. See the Warehouse
Administrator’s Guide for additional information
#
###
Segment default directories
#OPTION DEFAULT_DATA_SEGMENT <RB_PATH>
#OPTION DEFAULT_INDEX_SEGMENT <RB_PATH>

Temporary table default segment directories
#OPTION TEMPORARY_DATA_SEGMENT <RB_PATH>
#OPTION TEMPORARY_INDEX_SEGMENT <RB_PATH>

Keep/drop segments upon DROP table or index
#OPTION SEGMENTS {KEEP | DROP}
B-8 Informix Red Brick Decision Server Administrator’s Guide

Sample rbw.config File
Segment partial availability controls
#OPTION IGNORE_PARTIAL_INDEXES {OFF | ON}
#OPTION PARTIAL_AVAILABILITY {PRECHECK | INFO | WARN | ERROR}

Optical storage availability controls
#OPTION IGNORE_OPTICAL_INDEXES {OFF | ON}
#OPTION OPTICAL_AVAILABILITY {WAIT_NONE | WAIT_INFO | WAIT_WARN |
 SKIP_INFO | SKIP_WARN | ERROR | PRECHECK }

###
#
ADMIN section
#
###
#ADMIN ACCOUNTING { OFF | ON }
#ADMIN ACCT_DIRECTORY <RB_CONFIG>/logs
#ADMIN ACCT_MAXSIZE 0
#ADMIN ACCT_LEVEL { JOB | WORKLOAD }
#ADMIN LOGGING { ON | OFF }
#ADMIN LOG_DIRECTORY <RB_CONFIG>/logs
#ADMIN LOG_MAXSIZE 0
#ADMIN LOG_AUDIT_LEVEL { ALERT | ROUTINE | URGENT }
#ADMIN LOG_ERROR_LEVEL { ROUTINE | ALERT | URGENT }
#ADMIN LOG_OPERATIONAL_LEVEL { ALERT | ROUTINE | URGENT }
#ADMIN LOG_SCHEMA_LEVEL { ROUTINE | ALERT | URGENT }
#ADMIN LOG_USAGE_LEVEL { ALERT | ROUTINE | URGENT }
#ADMIN REPORT_INTERVAL 1
#ADMIN RENICE_COMMAND <full_path_of_a_renice_script>
♦

Create Advisor log files at system startup, and log advisor records?
#ADMIN ADVISOR_LOGGING {OFF | ON}

Advisor logging directory
#ADMIN ADVISOR_LOG_DIRECTORY <RB_CONFIG>/logs

Advisor log maximum size control
#ADMIN ADVISOR_LOG_MAXSIZE 0

###
#
PASSWORD section
#
###
Number of days allowed between password changes
#PASSWORD EXPIRATION_DAYS 0
Number of days before password expires that user will
begin to be warned that password is about to expire
#PASSWORD EXPIRATION_WARNING_DAYS 0
Minimum number of days that must pass between
password changes
#PASSWORD CHANGE_MINIMUM_DAYS 0
Number of previously used passwords on each account
against which new passwords will be compared for

UNIX
Configuration File B-9

Sample rbw.config File
uniqueness
#PASSWORD RESTRICT_PREVIOUS 0
The following three parameters control the requirements
for complex passwords. These parameters specify the
number of characters of the three types that must be
present in each new password.
#PASSWORD COMPLEX_NUM_ALPHA 0
#PASSWORD COMPLEX_NUM_NUMERICS 0
#PASSWORD COMPLEX_NUM_PUNCTUATION 0
Minimum required length for new passwords
#PASSWORD MINIMUM_LENGTH 0
Number of failed login attempts that will result in a
user account being locked
#PASSWORD LOCK_FAILED_ATTEMPTS 0
Number of hours an account will remain locked
#PASSWORD LOCK_PERIOD_HOURS 0

###
#
NETWORK section: Add additional entries as services
are created
#
###

*** SERVER

♦

###
#
DATABASE section: Add additional entries as databases
are created
#
###
Logical database name mappings
DB AROMA <redbrick_dir>/aroma_dir
DB ADMIN <redbrick_dir>/admin_dir
♦

DB AROMA <redbrick_dir>\aroma_db
DB ADMIN <redbrick_dir>\admin_db
♦

WIN NT

UNIX

WIN NT
B-10 Informix Red Brick Decision Server Administrator’s Guide

Description of File Elements
Description of File Elements
This section provides a brief description of the rbw.config file entries present
when Red Brick Decision Server is installed with the standard installation
procedure.

On Windows NT, the environment variables RB_HOST, RB_CONFIG, and
RB_PATH are defined in the Registry and controlled by the Registry Monitor.
On UNIX, they are defined in a startup file.

Configuration Information

<RB_HOST_NAME> SHMEM
(UNIX)

Defines the base number for the IPC key range. IPC
key values range from SHMEM to SHMEM plus
MAX_SERVERS. (Not present on all platforms.)

Default: 100 (base 16 integer).

This range of numbers must be unique and should be
assigned to Red Brick Decision Server by the system
administrator or person in charge of maintaining IPC
key numbers.

<RB_HOST_NAME> MAPFILE
(UNIX)

 Specifies the file used as a shared memory map file.
(Not present on all platforms.)

Default: ./.RB_HOST.mapfile

<RB_HOST_NAME> SERVER Defines the host name and port number for all
connections made to Red Brick Decision Server.

Default: The host name and port number used for the
database installation.

RBWAPI MAX_SERVERS Defines the maximum concurrent connections (users)
supported by the warehouse daemon on UNIX or
warehouse service on Windows NT. The number of
connections includes one for the Web user connection
option if it is enabled.

Default: 50 (base 10 integer)

 (1 of 4)
Configuration File B-11

Configuration Information
RBWAPI CLEANUP_SCRIPT Defines a spill file cleanup script to be executed upon
startup of the daemon on UNIX or the warehouse
service on Windows NT. A sample script is shipped
with the server in bin subdirectory of the redbrick
directory. This script is named rb_sample.cleanup on
UNIX and rbclean.bat on Windows NT.

RBWAPI UNIFIED_LOGON
(WIN NT)

When set to ON, the operating system must authen-
ticate each database user, requiring that each user has
a corresponding operating system account with privi-
leges to read and write files in the database
directories.

Default: OFF

RBWAPI SERVER_NAME
(UNIX)

Specifies the location of the server image (rbwsvr).

RBWAPI LOGFILE_SIZE Defines the maximum number of lines of the server
logfile, rbwapid.log. When this limit is reached, the
rbwapid daemon process renames the logfile
rbwapid.log_old and starts a new logfile.

Default: 1000

RBWAPI PROCESS_CHECKING_INTERVAL Check interval for process checker daemon (rbwpchk).

RBWAPI MAX_ACTIVE DATABASES The maximum number of active databases.

NLS_LOCALE MESSAGE_DIR Specifies the directory used for the error message
files.

Default: ./messages on UNIX or .\messages on
Windows NT

NLS_LOCALE LOCALE Specifies the language, territory, and sort order for the
server.
Default: English_UnitedStates.US-ASCII@Binary

NLS_LOCALE FIRST_DAYOF WEEK Specifies a day as the first day of the week, with 1
representing Sunday and 7 representing Saturday.

RBWMON INTERVAL
(UNIX)

Specifies the interval at which the server monitoring
daemon (rbw.servermon) checks for server processes.

Default: 120 seconds

 (2 of 4)
B-12 Informix Red Brick Decision Server Administrator’s Guide

Configuration Information
OPTION AUTOROWGEN Turns automatic row generation for referenced tables
on or off during TMU load operations.

Default: OFF

OPTION ARITHABORT Specifies that arithmetic operations should abort on
divide-by-zero errors.

OPTION
ALLOW_POSSIBLE_DEADLOCK

Specifies that servers should wait for a lock, even if a
deadlock could result, rather than returning if the
possibility of a deadlock exists.

Default: not set

OPTION CROSS_JOIN Specifies whether cross joins are allowed.

Default: OFF

OPTION COUNT_RESULT Specifies INTEGER or DECIMAL data type values for
the COUNT function. If tables have more than 232
rows, COUNT_RESULT should be set to DECIMAL.

Default: INTEGER

OPTION ADVISOR_LOGGING Enables or disables advisor query logging for all
sessions. Advisor logging must be enabled, either
with the ADMIN ADVISOR_LOGGING ON setting
in the rbw.config file or with an ALTER SYSTEM
START ADVISOR_LOGGING statement, in order for
the OPTION ADVISOR_LOGGING statement to take
effect. When set to ON_WITH_CORR_SUB, corre-
lated subqueries, along with other queries that get
rewritten, are logged. When set to ON, correlated
subqueries are not logged. Only valid with the Vista
option.

Possible values: ON, OFF, ON_WITH_CORR_SUB

Default: ON

OPTION
UNIFORM_PROBABILITY_FOR_ADVISOR

Determines whether the Advisor log file is scanned in
order to compute the reference count for Advisor
system table queries. When set to ON, it is assumed
that all of the views on a base table are referenced the
same number of times.

Default: OFF

OPTION
PRECOMPUTED_VIEW_QUERY_REWRITE

Turns the aggregate query rewrite system ON or OFF.

Default: ON

 (3 of 4)
Configuration File B-13

Configuration Information
OPTION
AUTO_INVALIDATE_PRECOMPUTED_VIEWS

Automatically invalidates all the precomputed views
that reference any detail table whose contents are
modified with inserts, updates, and deletes or LOAD
DATA operations after the views are created. If set to
OFF, precomputed views must be marked invalid
manually with the SET PRECOMPUTED VIEW
view_name INVALID command.

Default: ON

OPTION
USE_INVALID_PRECOMPUTED_VIEWS

When set to ON, uses all precomputed views,
including views that are marked invalid (either from
SET PRECOMPUTED VIEW view_name INVALID
commands or from loading or inserting data in the
detail table), to rewrite queries with the Vista query
rewrite engine.

Default: OFF

On Windows NT, this parameter also specifies the
directory in which spill files for query processing are
created. Default: c:\tmp

OPTION VERSIONING Starts DML statements as versioning transactions.

OPTION TRANSACTION_ISOLATION_LEVEL Sets the isolation level when acquiring locks for DML
statements.

OPTION TMU_VERSIONING Starts TMU operations as versioning transactions.

OPTION EXPORT_DEFAULT_PATH Specifies the default directory for files exported using
an EXPORT statement.

OPTION EXPORT_MAX_FILE_SIZE Specifies the maximum file size for files exported
using an EXPORT command.

 (4 of 4)
B-14 Informix Red Brick Decision Server Administrator’s Guide

License Keys
License Keys

LICENSE_KEY
RED_BRICK_WAREHOUSE_X

Specifies your license key for Red Brick Decision Server for
Workgroups, where X represents a license for a particular
number of users.

LICENSE_KEY
RED_BRICK_WAREHOUSE_FOR_
WORKGROUPS_X

Specifies your license key for Red Brick Decision Server for
Workgroups, where X represents a license for 1, 5, 10, 20, or 30
users.

LICENSE_KEY
WEB_CONNECTIONS_X

Specifies your license key for Web user connections, where X
represents a license for 5, 10, 20, 30, 50, 75, 100, 150, 250, or 500
users. This license provides cost-effective database access for a
group of users using a web-based client tool. This group of
users is treated as a single user for administrative purposes.
For example, a group of 100 real users who make occasional
queries might be adequately served by a license that allows 5
concurrent connections. For information about enabling this
option, refer to the Installation and Configuration Guide.

LICENSE_KEY AUTO_AGGREGATE Specifies your license key for the Auto Aggregate Option.

LICENSE_KEY BACKUP_RESTORE Specifies your license key for the TMU Incremental Backup
and Restore option.

LICENSE_KEY PTMU_OPTION Specifies your license key for the Parallel Table Management
Utility option.

LICENSE_KEY
WORKGROUPS_PARALLEL_OPTION

Specifies your license key for the Workgroups Parallel option
for Red Brick Decision Server for Workgroups.

LICENSE_KEY SQL_BACKTRACK_X Specifies your license key for Informix Red Brick
SQL-BackTrack, where X represents an unlimited or a
workgroups license.

LICENSE_KEY RED_BRICK_VISTA Specifies your license key for the Informix Vista option.
Configuration File B-15

Tuning and Performance Parameters
Tuning and Performance Parameters

TUNE TMU_BUFFERS Specifies the buffer cache size in 8-kilobyte blocks for
the TMU; values range from 128 blocks to 8208 blocks.

Default: 128 blocks

TUNE ROWS_PER_SCAN_TASK Specifies the minimum estimated number of rows to be
scanned by a relation scan before a parallel relation scan
is performed.

Default: 2,147,483,647 (Do not enter commas.)

TUNE ROWS_PER_FETCH_TASK Specifies the minimum estimated number of data rows
returned during the fetch portion of STARjoin
processing before parallel fetch processes are used.

Default: 2,147,483,647 (Do not enter commas.)

TUNE ROWS_PER_JOIN_TASK Specifies the minimum estimated number of index
entries returned during the join processing (index-
probing) portion of STARjoin processing before parallel
join processes are used.

Default: 2,147,483,647 (Do not enter commas.)

TUNE QUERYPROCS Specifies upper limit on the number of processes used to
process a single query.

Default: 0

TUNE TOTALQUERYPROCS Specifies upper limit on the number of processes used at
one time for parallel query processing across all servers
under a single warehouse daemon (in addition to
number specified as MAX_SERVERS parameter).

Default: 0

TUNE FORCE_SCAN_TASKS Specifies the number of parallel processes to use in a
relation scan.

Default: OFF

TUNE FORCE_FETCH_TASKS Specifies the number of parallel processes to use
fetching row data for a single query.

Default: OFF

 (1 of 3)
B-16 Informix Red Brick Decision Server Administrator’s Guide

Tuning and Performance Parameters
TUNE FORCE_JOIN_TASKS Specifies the number of parallel processes to use
processing joins for a single query.

Default: OFF

TUNE FILE_GROUP Defines disk groups for purposes of reducing disk seek
contention.

Default: none

TUNE GROUP Defines the maximum number of parallel processes per
query that access the named disk group concurrently.

Default: 1 process per disk group per query

TUNE FORCE_HASHJOIN_TASKS Specifies the number of parallel processes to use
processing hybrid hash joins.

Default: OFF

TUNE PARALLEL_HASHJOIN Specifies if parallel processes are used to process hybrid
hash joins.

Default: ON

TUNE FORCE_AGGREGATION_TASKS Specifies the number of parallel processes to use
processing aggregation functions.

Default: OFF

TUNE
PARTITIONED_PARALLEL_AGGREGATION

Specifies if parallel processes are used to process aggre-
gation functions.

Default: OFF

TUNE RESULT_BUFFER Specifies the size of the query result buffer.

Default: UNLIMITED

TUNE RESULT_BUFFER_FULL_ACTION Specifies whether a query aborts or pauses when the
result buffer fills up.

Default: PAUSE

FILLFACTOR PI, FILLFACTOR STAR,
FILLFACTOR SI

Specifies a fill factor percentage to use when creating
new index nodes for the primary, STAR, and secondary
(user-defined) indexes, respectively.

Default: 100

 (2 of 3)
Configuration File B-17

Tuning and Performance Parameters
FILLFACTOR VARCHAR Specifies the user-estimated size of a column with
VARCHAR data type.

Default: 10

OPTION TMU_OPTIMIZE Turns optimized index-building on or off for the TMU.

Default: OFF

TUNE INDEX_TEMPSPACE_THRESHOLD Specifies the file size (in kilobytes or megabytes) at
which spill files for index building are created.

Default size: 1 megabyte

Default units: kilobytes

TUNE INDEX_TEMPSPACE_MAXSPILLSIZE Specifies maximum size in kilobytes (K), megabytes
(M), or gigabytes (G) to which a file for index building
can grow.

Default: 1 gigabyte

TUNE INDEX_TEMPSPACE_DIRECTORY Specifies the directory in which spill files for index
building are created. Specify multiple entries for
multiple directories with one directory per
TUNE INDEX_TEMPSPACE_DIRECTORY parameter.

Default: /tmp on UNIX or c:\tmp on Windows NT

TUNE QUERY_MEMORY_LIMIT Specifies the limit to the amount of memory used for
query processing in kilobytes (K), megabytes (M), or
gigabytes (G), at which spill files for query processing
are created.

Default size: 50 megabyte

Range: 2 megabytes to 4 gigabytes

Default: 1 gigabyte

TUNE QUERY_TEMPSPACE_MAXSPILLSIZE Specifies maximum size in kilobytes (K), megabytes
(M), or gigabytes (G) to which a file for query processing
can grow.

TUNE QUERY_TEMPSPACE_DIRECTORY Specifies the directory in which spill files for query
processing are created. Specify multiple entries for
multiple directories with one directory per
TUNE QUERY_TEMPSPACE_DIRECTORY parameter.

Default: /tmp on UNIX or c:\tmp on Windows NT

 (3 of 3)
B-18 Informix Red Brick Decision Server Administrator’s Guide

Default Parameters
Default Parameters

Segment Parameters

DEFAULT ROWCOUNT Specifies the maximum number of rows returned before the
server stops the execution of a query. A value of zero (0) turns
off the restriction on row retrieval.

Default: 0

DEFAULT INFO_MESSAGE_LIMIT Specifies the maximum number of informational messages
(“STATISTICS” and “INFORMATION”) returned per query.

Default: 1,000

DEFAULT RBW_LOADINFO_LIMIT Specifies the amount of historical load information for all TMU
sessions recorded by the system in the RBW_LOADINFO
system table. Setting this parameter to a value less than 256
causes the RB_DEFAULT_LOADINFO file to be truncated but
saves the original file as RB_DEFAULT_LOADINFO.save.

Default: 256

OPTION
DEFAULT_DATA_SEGMENT

Specifies a pathname to a directory in which to place default
data segments. (Do not use if database contains multiple
databases with default segments.)

Default: directory defined by RB_PATH

OPTION
DEFAULT_INDEX_SEGMENT

Specifies a pathname to a directory in which to place default
index segments. (Do not use if database contains multiple
databases with default segments.)

Default: directory defined by RB_PATH

OPTION
TEMPORARY_DATA_SEGMENT

Specifies the directory that stores the physical storage units
(PSUs) of the default temporary data segments for temporary
tables.

Default: current database directory

OPTION
TEMPORARY_INDEX_SEGMENT

Specifies the directory that stores the physical storage units
(PSUs) of the default temporary index segments for temporary
tables.

Default: current database directory

 (1 of 2)
Configuration File B-19

ADMIN Parameters
ADMIN Parameters

OPTION
GRANT_TEMP_RESOURCE_TO_ALL

Provides an option to grant or revoke authorization to create
temporary tables and indexes to all users with CONNECT
system role authorization.

Default: ON

OPTION SEGMENTS Specifies whether user-defined segments should be dropped or
kept when the table or index associated with them is dropped.
(Default segments are always dropped.)

Default: KEEP

OPTION
IGNORE_PARTIAL_INDEXES

Specifies that a query should ignore partial indexes and
consider only fully available indexes.

Default: OFF

OPTION
PARTIAL_AVAILABILITY

Specifies behavior when a query attempts to access a partially
available table or index.

Default: PRECHECK

OPTION
IGNORE_OPTICAL_INDEXES

Specifies whether to use indexes stored on optical segments or
not.

Default: OFF

OPTION
OPTICAL_AVAILABILITY

Specifies the query behavior with respect to optical segments.

Default: WAIT_NONE

 (2 of 2)

ADMIN ACCOUNTING Specifies whether the log daemon turns on the accounting
feature upon daemon startup.

Default: OFF

ADMIN ACCT_DIRECTORY Specifies the location of the file containing the accounting
records.

Default: <$RB_CONFIG>/logs on UNIX or
<%RB_CONFIG%>\logs on Windows NT

ADMIN ACCT_MAXSIZE Sets maximum accounting file size; the minimum value is
10,240 kilobytes.

 (1 of 3)
B-20 Informix Red Brick Decision Server Administrator’s Guide

ADMIN Parameters
ADMIN ACCT_LEVEL Default: limited only by available disk space (Do not enter
commas.)

Specifies whether basic job accounting or more detailed
workload accounting records are captured.

Default: JOB

ADMIN LOGGING Specifies whether the log daemon turns on the logging feature
upon daemon startup.

Default: ON

ADMIN LOG_DIRECTORY Specifies the location of the file containing the logging records.

Default: <$RB_CONFIG>/logs on UNIX or
<%RB_CONFIG%>\logs on Windows NT

ADMIN LOG_MAXSIZE Sets maximum logging file size; the minimum value is 10,240
kilobytes.

Default: limited only by available disk space (Do not enter
commas.)

ADMIN LOG_AUDIT_LEVEL Sets the minimum severity level that is logged for audit events.

Default: ALERT

ADMIN LOG_ERROR_LEVEL Sets the minimum severity level that is logged for error events.

Default: ROUTINE

ADMIN LOG_OPERATIONAL_LEVEL Sets the minimum severity level that is logged for operational
events.

Default: ALERT

ADMIN LOG_SCHEMA_LEVEL Sets the minimum severity level that is logged for schema
events.

Default: ROUTINE

ADMIN LOG_USAGE_LEVEL Sets the minimum severity level that is logged for usage events.

Default: ALERT

ADMIN REPORT_INTERVAL Sets the maximum interval (in minutes) between dynamic
system table refreshes.

Default: 1 minute

 (2 of 3)
Configuration File B-21

PASSWORD Parameters
PASSWORD Parameters

ADMIN RENICE_COMMAND
(UNIX)

Specifies the full pathname of a UNIX renice executable file that
changes user priorities.

Default: none

ADMIN ADVISOR_LOGGING Determines the startup state of the Advisor log. When this
parameter is set to ON, a log file is created when the log daemon
(rbwadmd) starts, and log records are captured when aggregate
views are used and when candidate views are generated. When
this parameter is set to OFF, no log file is created, and data is not
logged.

Default: OFF

ADMIN ADVISOR_LOG_DIRECTORY Specifies the location of the file containing the Advisor log
records. Only valid with the Vista option.

Default: <$RB_CONFIG>/logs on UNIX or
<%RB_CONFIG%>\logs on Windows NT

ADMIN ADVISOR_LOG_MAXSIZE Sets maximum Advisor log file size; the minimum value is
10,240 kilobytes.

Default: limited only by available disk space (Do not enter
commas.)

 (3 of 3)

PASSWORD EXPIRATION_DAYS Sets the number of days for which each user password is valid.

Default: unlimited

PASSWORD
EXPIRATION_WARNING_DAYS

Sets the number of days prior to password expiration that a user
receives a warning message upon each login.

Default: none

PASSWORD
CHANGE_MINIMUM_DAYS

Sets the minimum number of days that must pass between
password changes.

PASSWORD RESTRICT_PREVIOUS Sets minimum number of unique passwords that must be used
before an expired password can be reused.

Default: unlimited

 (1 of 2)
B-22 Informix Red Brick Decision Server Administrator’s Guide

Database Entries
Database Entries

Exception: The ADMIN and AROMA databases do not count against the two-
database limit for Red Brick Decision Server for Workgroups installations.

PASSWORD
COMPLEX_NUM_ALPHA

Specifies minimum number of alphabetic characters that must
be used in each new password.

Default: 0

PASSWORD
COMPLEX_NUM_NUMERICS

Specifies minimum number of numeric characters that must be
used in each new password.

Default: 0

PASSWORD
COMPLEX_NUM_PUNCTUATION

Specifies minimum number of punctuation characters that
must be used in each new password.

Default: 0

PASSWORD MINIMUM_LENGTH Specifies minimum number of total characters that must be
used in each new password.

Default: 0

PASSWORD
LOCK_FAILED_ATTEMPTS

Sets maximum number of failed database access attempts
before a user is locked out of the database.

Default: 0

PASSWORD LOCK_PERIOD_HOURS Sets number of hours a locked account remains locked.

Default: 0

 (2 of 2)

DB AROMA Specifies the mapping between the AROMA logical database name
and its physical location. If the Aroma database is installed, this line
is present in the configuration file.

Default on UNIX: DB AROMA <redbrick_dir>/aroma_db
Default on Windows NT: DB AROMA <redbrick_dir>\aroma_db

DB ADMIN Specifies the mapping between the ADMIN logical database name
and its physical location.

Default on UNIX: DB ADMIN <redbrick_dir>/admin_db
Default on Windows NT: DB ADMIN <redbrick_dir>\admin_db
Configuration File B-23

Summary of Configuration Parameters
Summary of Configuration Parameters
The following table lists the various parameters that affect the server
environment and defines how they can be set and what processes they affect.
They are listed in the same order they appear in the rbw.config file, followed
by those parameters that are controlled only by a SET command.

Parameters

Set with Affects

rbw.config
SQL
SET

TMU
statement Server TMU Daemon

RB_HOST SHMEM
(UNIX)

✓ ✓ ✓ rbwapid

RB_HOST MAPFILE
(UNIX)

✓ ✓ ✓ rbwapid

RB_HOST SERVER ✓ rbwapid

RBWAPI parameters

MAX_SERVERS ✓ rbwapid

MAX_ACTIVE_
DATABASES

✓ rbwapid

PROCESS_CHECKING
_INTERVAL

✓ rbwapid

SERVER_NAME
(UNIX)

✓ rbwapid

LOGFILE_SIZE ✓ rbwapid

UNIFIED_LOGON
(WIN NT)

✓ rbwapid

NLS_LOCALE parameters

MESSAGE_DIR ✓ ✓ ✓ all

LOCALE ✓ ✓ ✓ all

 (1 of 6)
B-24 Informix Red Brick Decision Server Administrator’s Guide

Summary of Configuration Parameters
RBMON INTERVAL
(UNIX)

✓ servermon

LICENSE_KEY values ✓ Varies by product/option

TUNE parameters

FORCE_SCAN_TASK ✓ ✓ ✓

FORCE_FETCH_TASK ✓ ✓ ✓

FORCE_JOIN_TASK ✓ ✓ ✓

FORCE_HASHJOIN_
TASK

✓ ✓ ✓

FORCE_
AGGREGATION_
TASK

✓ ✓ ✓

ROWS_PER_SCAN_
TASK

✓ ✓ ✓

ROWS_PER_FETCH_
TASK

✓ ✓ ✓

ROWS_PER_JOIN_
TASK

✓ ✓ ✓

PARALLEL_
HASHJOIN

✓ ✓ ✓

PARTITIONED_
PARALLEL_
AGGREGATION

✓ ✓ ✓

QUERYPROCS ✓ ✓ ✓

TOTALQUERYPROCS ✓ ✓ rbwapid

Parameters

Set with Affects

rbw.config
SQL
SET

TMU
statement Server TMU Daemon

 (2 of 6)
Configuration File B-25

Summary of Configuration Parameters
FILE_GROUP ✓ ✓ rbwapid

GROUP ✓ ✓ rbwapid

INDEX_TEMPSPACE_
THRESHOLD,
MAXSPILLSIZE,
DIRECTORY

✓ ✓ ✓

QUERY_MEMORY_
LIMIT,
QUERY_TEMPSPACE,
MAXSPILLSIZE,
DIRECTORY

✓ ✓ ✓

FILLFACTOR SI, PI,
STAR

✓ ✓ ✓

FILLFACTOR
VARCHAR

✓

OPTION parameters

DEFAULT_DATA_
SEGMENT

✓ ✓ ✓

DEFAULT_INDEX_
SEGMENT

✓ ✓ ✓

IGNORE_PARTIAL_
INDEXES

✓ ✓ ✓

PARTIAL_
AVAILABILITY

✓ ✓ ✓

SEGMENTS (DROP,
KEEP)

✓ ✓ ✓

ARITHABORT ✓ ✓ ✓

AUTOROWGEN ✓ ✓ ✓

Parameters

Set with Affects

rbw.config
SQL
SET

TMU
statement Server TMU Daemon

 (3 of 6)
B-26 Informix Red Brick Decision Server Administrator’s Guide

Summary of Configuration Parameters
COUNT_RESULT ✓ ✓ ✓

CROSS_JOIN ✓ ✓ ✓

ADVISOR_LOGGING ✓ ✓ ✓

PRECOMPUTED_
VIEW_QUERY_
REWRITE

✓ ✓ ✓

AUTO_INVALIDATE_
PRECOMPUTED_
VIEWS

✓ ✓ ✓

USE_INVALID_
PRECOMPUTED_
VIEWS

✓ ✓ ✓

UNIFORM_
PROBABILITY_FOR_
ADVISOR

✓ ✓ ✓

ADMIN parameters

* On UNIX, these parameters can be set with an SQL ALTER SYSTEM statement.

ACCOUNTING * ✓ rbwlogd

ACCT_DIRECTORY ✓ rbwlogd

ACCT_LEVEL* ✓ rbwlogd

ACCT_MAXSIZE * ✓ rbwlogd

ADVISOR_
LOGGING *

✓ ✓ rbwlogd

ADVISOR_LOG_
DIRECTORY

✓ ✓ rbwlogd

Parameters

Set with Affects

rbw.config
SQL
SET

TMU
statement Server TMU Daemon

 (4 of 6)
Configuration File B-27

Summary of Configuration Parameters
ADVISOR_LOG_
MAXSIZE

✓ ✓ rbwlogd

LOGGING* ✓ rbwlogd

LOG_AUDIT_LEVEL * ✓ rbwlogd

LOG_DIRECTORY ✓ rbwlogd

LOG_ERROR_LEVEL * ✓ rbwlogd

LOG_MAXSIZE * ✓ rbwlogd

LOG_OPERATIONAL
_LEVEL *

✓ rbwlogd

LOG_SCHEMA_
LEVEL *

✓ rbwlogd

LOG_USAGE_LEVEL* ✓ rbwlogd

REPORT_INTERVAL ✓ ✓ ✓ ✓

RENICE_COMMAND
(UNIX)

✓ ✓

PASSWORD parameters

CHANGE_MINIMUM
_DAYS

✓ ✓

COMPLEX_NUM_
ALPHA

✓ ✓

EXPIRATION_DAYS ✓ ✓ ✓

LOCK_FAILED_
ATTEMPTS

✓ ✓ ✓

RESTRICT_PREVIOUS ✓

Parameters

Set with Affects

rbw.config
SQL
SET

TMU
statement Server TMU Daemon

 (5 of 6)
B-28 Informix Red Brick Decision Server Administrator’s Guide

Summary of Configuration Parameters
DB logical database
names

✓ ✓ ✓ all

LOCK (WAIT,NO
WAIT)

✓ ✓

✓ ✓

LOCK (table, database) ✓ ✓ ✓

ORDER_BY_ASC_
NULL, ORDER_BY_
DESC_NULL

✓ ✓

* On UNIX, these parameters can be set with an SQL ALTER SYSTEM statement.

Parameters

Set with Affects

rbw.config
SQL
SET

TMU
statement Server TMU Daemon

 (6 of 6)
Configuration File B-29

C
Appendix
System Tables and
Dynamic Statistic Tables
This appendix describes the system catalog, the system tables,
and the dynamic statistic tables (DSTs) for Red Brick Decision
Server. The column name, data type, and a description of the
column is provided for each table.

This appendix contains the following sections:

■ System Catalog

■ Dynamic Statistic Tables

■ Data Types and Their Sizes

System Catalog
Red Brick Decision Server maintains system tables that describe
the data stored in user databases. Contents of the system tables
can be viewed with a SELECT statement, which can include
system-table joins. However, the data in the system tables is
read-only; it cannot be inserted, updated, or deleted.

The following statement displays a list of tables to which the
current user has access. System tables and user-created tables
available to the user are displayed.

select * from rbw_tables ;

System Catalog
The system catalog contains a list of system tables. Each system table contains
information for the entire database. When a user displays information stored
in a system table, the user sees only tables and information about those tables
that the user created or has permission to access. The RBW_TABAUTH and
RBW_USERAUTH system tables define the tables that each user creates and
has permission to access.

Table Name Table Description

RBW_COLUMNS Describes the columns from all objects in
RBW_TABLES.

RBW_CONSTRAINTS Records the names of primary key and foreign key
constraints defined in CREATE TABLE statements.

RBW_CONSTRAINT_
COLUMNS

Records the names of columns that comprise the
primary key and foreign key constraints defined in
CREATE TABLE statements.

RBW_HIERARCHIES Shows the relationships within defined hierarchies.

RBW_INDEXCOLUMNS Records the columns that form the key of the indexes
listed in RBW_INDEXES.

RBW_INDEXES Describes the indexes on all tables listed in
RBW_TABLES.

RBW_LOADINFO Provides statistics on recent load operations.

RBW_MACROS Describes all macros defined in the database.

RBW_OPTIONS Displays current settings for database parameters that
can be tuned.

RBW_PRECOMPVIEW_
CANDIDATES

Advisor system table for candidate views (refer to the
Informix Vista User’s Guide).

RBW_PRECOMPVIEW_
UTILIZATION

Advisor system table for views that are defined in the
database (refer to the Informix Vista User’s Guide).

RBW_PRECOMPVIEW_
COLUMNS

Shows the relationships between columns in
aggregate tables and precomputed views.

RBW_RELATIONSHIPS Lists tables that share primary key–foreign key
relationships and shows the constraint names applied
to those relationships.

 (1 of 2)
C-2 Informix Red Brick Decision Server Administrator’s Guide

System Catalog
RBW_ROLE_MEMBERS Describes the relationship of all user-created roles to
the users and roles that have been granted to them.

RBW_ROLES Describes all user-created roles defined in the
database.

RBW_SEGMENTS Describes all segments in the system; only users with
the DBA or RESOURCE system role or ACCESS_ANY
authorization can access this table.

RBW_STORAGE Describes the physical storage units (PSUs) used in the
system; only users with the DBA or RESOURCE
system role or ACCESS_ANY authorization can access
this table.

RBW_SYNONYMS Describes all table synonyms for tables listed in
RBW_TABLES.

RBW_TABAUTH Describes the access rights granted on objects in
RBW_TABLES.

RBW_TABLES Describes all tables (including system tables), views,
and synonyms in the database.

RBW_USERAUTH Describes access rights granted to users authorized to
use the database.

RBW_VIEWS Describes the views in RBW_TABLES and provides
information about precomputed views.

RBW_VIEWTEXT Describes the text of all views in RBW_VIEWS.

Table Name Table Description

 (2 of 2)
System Tables and Dynamic Statistic Tables C-3

RBW_COLUMNS Table
RBW_COLUMNS Table
The RBW_COLUMNS table describes the columns from all database objects
listed in the RBW_TABLES table. When a user displays information stored in
the RBW_COLUMNS table, the user sees only those columns in objects that the
user created or has permission to access. This table is updated by the ALTER,
CREATE and DROP TABLE, VIEW, and SYNONYM statements. It contains the
following columns.

Column Name Column Type Column Description

NAME CHAR(128) Name of column.

TNAME CHAR(128) Name of table.

SEQ SMALLINT Column sequence number.

TYPE CHAR(12) Column data type.

LENGTH SMALLINT Actual length of column in bytes.

PRECISION SMALLINT Specified or implied numeric precision; for TIME
and TIMESTAMP columns, the digits display
fractional seconds.

SCALE SMALLINT Specified scaling factor.

NULLS CHAR(1) Flag indicating whether NULLs are allowed
(Y or N).

UNIQ CHAR(1) Flag indicating whether column values are
unique (Y or N).

PKSEQ SMALLINT Sequence of column in primary key; 0 if not a
column in primary key.

TID SMALLINT Table identifier.

DEFAULTVALUE CHAR(256) Default for column.

SEGSEQ SMALLINT Sequence of segmenting column in segment
range specification (1 for segmenting column, 0
for nonsegmenting columns, NULL for views).

 (1 of 2)
C-4 Informix Red Brick Decision Server Administrator’s Guide

RBW_CONSTRAINTCOLUMNS Table
RBW_CONSTRAINTCOLUMNS Table
The RBW_CONSTRAINTCOLUMNS table identifies the columns on which
primary and foreign key constraints are defined in CREATE TABLE
statements.

FILLFACTOR SMALLINT Estimated size of a VARCHAR column
expressed as a percentage of the maximum
length. Default value is 10.

USAGE CHAR(16) Indicates what the column is used for, either a
table column or a type specific to the Data
Mining Option.

COMMENT CHAR(256) User-specified comment; NULL if not set with
the ALTER TABLE, ALTER SYNONYM, or
ALTER VIEW statements.

Column Name Column Type Column Description

CONSTRAINT_
NAME

CHAR(128) The name of the constraint.

TNAME CHAR(128) The name of the table containing the constraint.

CNAME CHAR(128) The name of the column on which the constraint
is defined.

COLSEQ INTEGER The sequence of the column in the constraint
definition.

Column Name Column Type Column Description

 (2 of 2)
System Tables and Dynamic Statistic Tables C-5

RBW_CONSTRAINTS Table
RBW_CONSTRAINTS Table
The RBW_CONSTRAINTS table describes the primary and foreign key
constraints defined in CREATE TABLE statements.

RBW_HIERARCHIES Table
The RBW_HIERARCHIES table shows the table and column relationships
within a hierarchy.

Column Name Column Type Column Description

NAME CHAR(128) The name of the constraint.

ID INTEGER The internal identification number of the
constraint.

TYPE CHAR(11) The type of constraint: PRIMARY KEY or
FOREIGN KEY.

TNAME CHAR(128) The name of the table containing the constraint.

CREATOR CHAR(128) The user who created or last altered the table
definition.

Column Name Column Type Column Description

NAME CHAR(128) Name of the hierarchy.

FROM_TABLE CHAR(128) Table from which values are mapped.

FROM_COLUMN CHAR(128) Column from which values are mapped.

TO_ TABLE CHAR(128) Table to which values are mapped.

TO_COLUMN CHAR(128) Column to which values are mapped.

CONSTRAINT_
NAME

CHAR(128) Names the foreign key constraint through which
a rollup relationship is defined. Indicates NULL
if the rollup relationship is within the same table.
C-6 Informix Red Brick Decision Server Administrator’s Guide

RBW_INDEXCOLUMNS Table
RBW_INDEXCOLUMNS Table
The RBW_INDEXCOLUMNS table describes the index keys on all indexes
listed in the RBW_INDEXES table. This table stores one row for each column
in an index key.

When users display information stored in the RBW_INDEXES table, they see
only indexes of objects they created or have permission to access. This table
is updated by CREATE TABLE, DROP TABLE, CREATE INDEX, or DROP INDEX
statements and contains the following columns.

Column Name Column Type Column Description

INAME CHAR(128) Name of index.

TNAME CHAR(128) Name of table.

CNAME CHAR(128) Name of column in key.

SEQ SMALLINT Sequence number of column in key.

FKNAME CHAR(128) Name of the foreign key constraint for STAR indexes.
Returns NULL for non-STAR indexes.
System Tables and Dynamic Statistic Tables C-7

RBW_INDEXES Table
RBW_INDEXES Table
The RBW_INDEXES table describes the indexes on all objects listed in the
RBW_TABLES table. When users display information stored in the
RBW_INDEXES table, they see only indexes on columns in objects they created
or have permission to access. This table is updated by CREATE TABLE, DROP
TABLE, ALTER INDEX, CREATE INDEX, or DROP INDEX statements and
contains the following columns.

Column Name Column Type Column Description

NAME CHAR(128) Name of index; default primary key indexes are
named <table_name>_PK_IDX.

TNAME CHAR(128) Name of table.

TYPE CHAR(7) Index type: BTREE, STAR, TARGET, TARGETS,
TARGETM, or TARGETL.

CNAME CHAR(128) Indexed column name; first column name on multi-
column indexes.

CREATOR CHAR(128) Creator of index.

DATETIME TIMESTAMP Date and time of index creation; NULL indicates
index is under construction.

FILLFACTOR INTEGER Fill factor setting of index.

INTACT CHAR(1) Flag indicating whether index is intact (Y), or there
is detected, unrepaired damage (N).

PARTIAL CHAR(1) Whether table is partially available due to one or
more offline segments (Y or N).

STATE CHAR(20) VALID, INVALID, BUILDING.

COMMENT CHAR(256) User-specified comment; NULL if not set with the
ALTER INDEX statement.
C-8 Informix Red Brick Decision Server Administrator’s Guide

RBW_LOADINFO Table
RBW_LOADINFO Table
The RBW_LOADINFO table describes data loads into tables and offline
segments. This table is updated by LOAD DATA statements and contains one
row for each load operation. Only the most recent 256 rows are retained;
older rows are deleted automatically. This table contains the following
columns.

Column Name Column Type Column Description

TNAME CHAR(128) Name of table.

SEGNAME CHAR(128) Name of segment if load performed
into an offline segment; NULL if not
an offline load.

USERNAME CHAR(128) Name of user that performed load.

STARTED TIMESTAMP Date and time load started.

FINISHED TIMESTAMP Date and time load completed.

MODE CHAR(20) Mode used to insert or modify rows
(INSERT, REPLACE, APPEND,
MODIFY, MODIFY AGGREGATE,
UPDATE, UPDATE AGGREGATE).

STATUS CHAR(128) Success: Load completed without
error.

Incomplete: Load encountered a
nonfatal error and can roll back the
table to a consistent state and indicate
progress with a message.

Error: Load fails, either in initial
stages before modifying table, or later
when it cannot roll table back to
consistent state.

INSERTED INTEGER Number of rows inserted into table.

UPDATED INTEGER Number of existing rows in the table
that were updated.

 (1 of 2)
System Tables and Dynamic Statistic Tables C-9

RBW_LOADINFO Table
SKIPPED INTEGER Number of rows in the input file that
were skipped, as specified by a START
RECORD clause.

DISCARDED INTEGER Number of rows in the input file that
were rejected and discarded.

AUTOROWGEN CHAR(1) Whether any rows were automatically
generated (Y or N).

COMMENT CHAR(256) User-specified comment or
descriptive data; NULL if not
specified in the LOAD DATA
statement.

TRANSACTION_TYPE CHAR (32) Transaction type for the command.
Possible values: READ_ONLY,
VERSIONING, BLOCKING.

READ_REVISION DECIMAL (10,0) The revision number of the database
being accessed by the transaction.

NEW_REVISION DECIMAL (10,0) The revision number of the database
the transaction creates. NULL for
aborted or uncommitted transactions.

Column Name Column Type Column Description

 (2 of 2)
C-10 Informix Red Brick Decision Server Administrator’s Guide

RBW_MACROS Table
RBW_MACROS Table
The RBW_MACROS table describes all macros in the database. When a
member of the DBA system role or a user with ACCESS_ANY authorization
displays information stored in the RBW_MACROS table, the user can see all
public and private macros. All other users can see only those macros the user
created or those defined as PUBLIC. Only the creator of a temporary macro
can see information on that temporary macro. This table is updated by
CREATE and DROP MACRO statements and contains the following columns.

Column Name Column Type Column Description

NAME CHAR(128) Name of macro.

TYPE CHAR(9) Macro type: PUBLIC, PRIVATE, or TEMPORARY.

NARGS SMALLINT Number of macro arguments expected.

CREATOR CHAR(128) Creator of macro.

DATETIME TIMESTAMP Date and time of macro creation.

CATEGORY SMALLINT Syntax category for macro; values less than 256 can
be defined by Red Brick Decision Server1; NULL if
not set with the CREATE MACRO statement.

COMMENT CHAR(256) User-specified comment or descriptive data; NULL
if not set with the CREATE MACRO or ALTER
MACRO statement.

TEXT CHAR(1024) Text of macro definition.

1 For information about categories that Red Brick Decision Server defines, refer to
the SQL Reference Guide.
System Tables and Dynamic Statistic Tables C-11

RBW_OPTIONS Table
RBW_OPTIONS Table
The RBW_OPTIONS table lists the values of all tunable parameters in the
database. This table is updated when a user issues a SET command during the
current session. It contains the following columns.

RBW_PRECOMPVIEW_CANDIDATES Table
For a description of the RBW_PRECOMPVIEW_CANDIDATES Advisor system
table, refer to the Informix Vista User’s Guide.

RBW_PRECOMPVIEW_UTILIZATION Table
For a description of the RBW_PRECOMPVIEW_UTILIZATION Advisor system
table, refer to the Informix Vista User’s Guide.

Column Name Column Description

USERNAME CHAR(128) Name of user running the current session.

OPTION_NAME CHAR(128) Name of parameter.

VALUE CHAR(1024) Current value of parameter.

USE_LATEST_
REVISION
C-12 Informix Red Brick Decision Server Administrator’s Guide

RBW_PRECOMPVIEWCOLUMNS Table
RBW_PRECOMPVIEWCOLUMNS Table
The RBW_PRECOMPVIEWCOLUMNS table shows the relationship between
columns in aggregate tables and precomputed views.

RBW_RELATIONSHIPS Table
The RBW_RELATIONSHIPS table describes the primary key-foreign key
relationships between tables in a schema. It contains the following columns.

Column Name Column Type Column Description

TNAME CHAR(128) Name of the aggregate table associated with the
precomputed view.

TCOLUMN CHAR(128) Name of the column in the aggregate table.

VNAME CHAR Name of the precomputed view.

VCOLUMN CHAR Name of the column in the precomputed view.

Column Name Column Type Column Description

PKTABLE CHAR(128) The name of the referenced (dimension) table.

FKTABLE CHAR(128) The name of the referencing (fact) table.

PKCONSTRAINT CHAR(128) The name of the primary key constraint in the
referenced table. If the CREATE TABLE
statement does not name the constraint, a name
will be generated by appending the string
_PKEY_CONSTRAINT to the name of the table.

 (1 of 2)
System Tables and Dynamic Statistic Tables C-13

RBW_ROLE_MEMBERS Table
RBW_ROLE_MEMBERS Table
The RBW_ROLE_MEMBERS table describes the relationship of all user-created
roles and their members (all users and roles that have been granted the role).
When a user displays information stored in the RBW_ROLE_MEMBERS table,
the user sees all user-created roles that have members. This table is updated
by GRANT and REVOKE statements.

FKCONSTRAINT CHAR(128) The name of the foreign key constraint as
specified by the referencing table. If the CREATE
TABLE statement does not name the constraint,
a name will be generated by appending the
string _FKEYN_CONSTRAINT to the name of
the table, where n is a number that identifies the
ordinal position of the foreign key specification,
as defined by the referencing table.

DELACTION CHAR(9) Action triggered by DELETE: CASCADE,
NO_ACTION.

CREATOR CHAR(128) The user who created the table.

Column Name Column Type Column Description

ROLENAME CHAR(128) Name of role.

USERNAME CHAR(128) Name of user or user-created role that has been
granted ROLENAME.

INDIRECT CHAR(1) Whether the user or user-created role is an indirect
member of ROLENAME (Y if an indirect member; N
if a direct member).

ADDED TIMESTAMP Date and time the user or user-created role became
a member of ROLENAME.

Column Name Column Type Column Description

 (2 of 2)
C-14 Informix Red Brick Decision Server Administrator’s Guide

RBW_ROLES Table
RBW_ROLES Table
The RBW_ROLES table describes the user-created roles in the database. When
a user displays information stored in the RBW_ROLES table, the user sees all
user-created roles in the database.

RBW_SEGMENTS Table
The RBW_SEGMENTS table describes all segments in the system. When a
member of the DBA or RESOURCE system role or a user with ACCESS_ANY
authorization displays information in the RBW_SEGMENTS table, the user
sees all segments. When a member of the CONNECT system role displays this
table, the user sees no segments. This table is updated by ALTER SEGMENT,
CREATE SEGMENT, DROP SEGMENT, CREATE TABLE, DROP TABLE, CREATE
INDEX, DROP INDEX, BACKUP, RESTORE, and LOAD DATA statements. It
contains the following columns.

Column Name Column Type Column Description

NAME CHAR(128) Name of role.

CREATOR CHAR(128) Creator of role.

CREATED TIMESTAMP Date and time role was created.

COMMENT CHAR(256) User-specified comment; NULL if not set with the
ALTER ROLE statement.

Column Name Column Type Column Description

NAME CHAR(128) Name of segment.

TNAME CHAR(128) Name of table that uses segment for row data or
indexes; set to NULL for unattached segments.

CREATOR CHAR(128) Creator of segment.

DATETIME TIMESTAMP Date and time of segment creation.

NPSUS INTEGER Number of physical storage units (PSUs) used
for segment.

 (1 of 3)
System Tables and Dynamic Statistic Tables C-15

RBW_SEGMENTS Table
NCOLS INTEGER Number of columns used to segment the data or
index.

MINKEY CHAR(256) Minimum key value in the segment; displays
first 256 characters.

MAXKEY CHAR(256) Maximum key value in the segment; displays
first 256 characters.

ID INTEGER Segment ID.

TOTALFREE INTEGER Kilobytes of unused space in segment. Refer to
“TOTALFREE Column” on page 9-16

INAME CHAR(128) Name of index that uses segment; set to NULL
for unattached and row data segments.

ONLINE CHAR(1) Whether a segment is online (Y or N). For
system segment (NULL).

OPTICAL CHAR(1) Whether a segment contains one or more optical
PSUs (Y or N).

(NULL for system segment.)

INTACT CHAR(1) Flag indicating whether segment is intact (Y), or
there is detected, unrepaired damage (N). For
system segment (NULL).

INSYNCH CHAR(1) Whether the row contents are synchronized
with the indexes of table: for offline segments: Y
or N; for online segments: Y; for index segments,
unattached segments, and system segment:
NULL.

LAST_OFFLINE TIMESTAMP Date and time the segment last set offline;
initially contains segment creation time.

LAST_ONLINE TIMESTAMP Date and time segment last set online; initially
contains segment creation time.

LAST_LOAD TIMESTAMP Completion time of the last offline load into
segment; initially set to NULL.

Column Name Column Type Column Description

 (2 of 3)
C-16 Informix Red Brick Decision Server Administrator’s Guide

RBW_STORAGE Table
RBW_STORAGE Table
The RBW_STORAGE table describes the physical storage units (PSUs) in the
system. When a member of the DBA or RESOURCE system role or a user with
ACCESS_ANY authorization displays information in the RBW_STORAGE
table, the user sees all PSUs. When a member of the CONNECT system role
displays this table, the user sees no PSUs. This table is updated by CREATE
SEGMENT, DROP SEGMENT, CREATE TABLE, DROP TABLE, CREATE INDEX,
DROP INDEX, and BACKUP statements and contains the following columns.

COMMENT CHAR(256) User-specified comment or descriptive data;
NULL if not set with the ALTER SEGMENT
statement.

LOCAL_ID SMALLINT The segment ID that is returned in the
RBW_SEGID pseudocolumn.

USAGE CHAR (32) The current function that a segment is
performing. Possible values: UNUSED, TABLE,
INDEX, LOAD_WORK, LOAD_INDEX,
BACKUP_DATA, or VERSION_LOG.

Column Name Column Type Column Description

SEGNAME CHAR(128) Segment name containing PSU.

SEGID SMALLINT Segment ID containing PSU.

PSEQ INTEGER Sequence number of PSU in segment.

LOCATION CHAR(1024) The location of PSU.

MAXSIZE INTEGER Kilobytes of maximum allowed size of
PSU. Refer to “MAXSIZE Column” on
page 9-15, “Adding Space to a Segment”
on page 9-18, and “Changing PSU
Sizes” on page 9-25.

 (1 of 2)

Column Name Column Type Column Description

 (3 of 3)
System Tables and Dynamic Statistic Tables C-17

RBW_SYNONYMS Table
RBW_SYNONYMS Table
The RBW_SYNONYMS table describes all table synonyms for tables in the
database. When users display information stored in the RBW_SYNONYMS
table, they see only those synonyms they created or have permission to
access. This table is updated by ALTER, CREATE and DROP SYNONYM state-
ments and contains the following columns.

INITSIZE INTEGER Kilobytes of initial allocated size of PSU.
Refer to “Changing PSU Sizes” on
page 9-25.

EXTENDSIZE INTEGER Kilobytes of increment size to use when
extending PSU. Refer to “Changing PSU
Sizes” on page 9-25.

USED INTEGER Kilobytes of current area in use in PSU.
Refer to “USED Column” on page 9-16.

INTACT CHAR(1) Flag indicating whether PSU is intact
(Y), or there is detected, unrepaired
damage (N). For system segment
(NULL).

PHYSICAL_LOCATION CHAR (1024) Actual location of the PSU

Column Name Column Type Column Description

NAME CHAR(128) Name of synonym.

TNAME CHAR(128) Name of table referenced by synonym.

CREATOR CHAR(128) Creator of synonym.

COMMENT CHAR(256) User-specified comment; NULL if not set with the
ALTER SYNONYM statement.

Column Name Column Type Column Description

 (2 of 2)
C-18 Informix Red Brick Decision Server Administrator’s Guide

RBW_TABAUTH Table
RBW_TABAUTH Table
The RBW_TABAUTH table describes the object privileges granted on tables.
When users display information stored in the RBW_TABAUTH table, they see
only object privileges for tables they created or have permission to access.
This table is updated by GRANT and REVOKE statements and contains the
following columns.

Column Name Column Type Column Description

GRANTEE CHAR(128) User or role 1 granted object privilege to a table or
view.

GRANTOR CHAR(128) User granting privilege to GRANTEE.

TNAME CHAR(128) Name of table, view, or synonym.

SELAUTH CHAR(1) Whether grantee has SELECT privilege (Y, N, R,
or I). 2

INSAUTH CHAR(1) Whether grantee has INSERT privilege (Y, N, R,
or I). 2

DELAUTH CHAR(1) Whether grantee has DELETE privilege (Y, N, R,
or I). 2

UPDAUTH CHAR(1) Whether grantee has UPDATE privilege (Y, N, R,
or I). 2

DATETIME TIMESTAMP Date and time object privilege granted.

1 Object privileges can be granted to user-created roles.
2 The authorizations are as follows:

■ Y—User has the task authorization.

■ N—User does not have the object privilege.

■ R—User has the object privilege directly through a role.

■ I—User has the object privilege indirectly through a role
System Tables and Dynamic Statistic Tables C-19

RBW_TABLES Table
RBW_TABLES Table
The RBW_TABLES table lists all tables, views, and synonyms in the database.
When a user displays information stored in the RBW_TABLES table, the user
sees only those objects that the user created or has permission to access. This
table is updated by CREATE and DROP TABLE, VIEW, or SYNONYM statements
and contains the following columns.

Column Name Column Type Column Description

NAME CHAR(128) Name of table, view, or synonym.

TYPE CHAR(8) Type of object: TABLE, VIEW,
SYNONYM, or SYSTEM.

CREATOR CHAR(128) Creator of table (blank for system tables).

ID SMALLINT Table identifier; negative numbers
identify system tables.

DATETIME TIMESTAMP Date and time of table creation.

MAXSEGMENTS INTEGER Maximum number of segments allowed
for the table (specified with
CREATE TABLE or ALTER TABLE);
indicates NULL if not specified.

MAXROWS_PER_SEG INTEGER Maximum number of rows allowed per
segment (specified with CREATE TABLE
or ALTER TABLE); indicates NULL if not
specified.

MAXSIZE_ROWS INTEGER Maximum number of rows (calculated
from MAXSIZE parameter of CREATE
SEGMENT for all PSUs in each segment
attached).

SEGMENT_BY CHAR(11) Segmentation scheme of table (range,
hash, NULL).

 (1 of 2)
C-20 Informix Red Brick Decision Server Administrator’s Guide

RBW_USERAUTH Table
RBW_USERAUTH Table
The RBW_USERAUTH table describes access rights granted to users. When a
member of the DBA system role or a user with ACCESS_ANY authorization
displays information in the RBW_USERAUTH table, the user sees all users’
authorizations. When a member of the RESOURCE or CONNECT system role
displays this table, the user sees only the user’s own authorization. This table
is updated by GRANT and REVOKE statements and contains the following
columns.

INTACT CHAR(1) Flag indicating whether table is intact (Y),
or there is detected, unrepaired damage
(N).

PARTIAL CHAR(1) Flag indicating whether table is partially
available due to one or more offline
segments (Y or N).

COMMENT CHAR(256) User-specified comment; NULL if not set.

Column Name Column Type Column Description

GRANTEE CHAR(128) User or role 1 granted authorization.

GRANTOR CHAR(128) User granting authorization to
GRANTEE.

DBAAUTH CHAR(1) Whether GRANTEE is a member of
DBA system role (Y, N, R, or I). 2

1 Task authorizations can be granted to user-created roles.
2 The authorizations are as follows:

■ Y—User has the task authorization.

■ N—User does not have the task authorization.

■ R—User has the task authorization directly through a role.

■ I—User has the task authorization indirectly through a role.

 (1 of 5)

Column Name Column Type Column Description

 (2 of 2)
System Tables and Dynamic Statistic Tables C-21

RBW_USERAUTH Table
RESAUTH CHAR(1) Whether grantee is a member of
RESOURCE system role (Y, N, R,
or I). 2

DATETIME TIMESTAMP Date and time authorization
granted.

LOCKED1 CHAR(1) Whether or not GRANTEE’s
account is locked due to failed
connection attempts (Y or N); NULL
for roles.

EXPIRED1 CHAR(1) Whether or not the account for
GRANTEE is expired because of
failure to change password before
the defined expiration date (Y or N);
NULL for roles.

PASSWORD_TS TIMESTAMP Date and time database password
for GRANTEE was added or last
changed.

USER_MANAGEMENT CHAR(1) Whether GRANTEE can alter, create
and drop database users and change
passwords (Y, N, R, or I). 2

GRANT_TABLE CHAR(1) Whether GRANTEE can grant
object privileges to database users
and to roles (Y, N, R, or I). 2

ROLE_MANAGEMENT CHAR(1) Whether GRANTEE can alter,
create, drop, grant, and revoke roles
(Y, N, R, or I). 2

Column Name Column Type Column Description

1 Task authorizations can be granted to user-created roles.
2 The authorizations are as follows:

■ Y—User has the task authorization.

■ N—User does not have the task authorization.

■ R—User has the task authorization directly through a role.

■ I—User has the task authorization indirectly through a role.

 (2 of 5)
C-22 Informix Red Brick Decision Server Administrator’s Guide

RBW_USERAUTH Table
ALTER_ANY CHAR(1) Whether GRANTEE can alter
indexes, segments, tables, macros,
views, and synonyms (Y, N, R,
or I). 2

PUBLIC_MACROS CHAR(1) Whether GRANTEE can create and
drop PUBLIC macros (Y, N, R,
or I). 2

ACCESS_ANY CHAR(1) Whether GRANTEE can select data
from all database objects, including
private user information in the
system tables (Y, N, R, or I). 2

MODIFY_ANY CHAR(1) Whether GRANTEE can insert,
update, delete, and load any data (Y,
N, R, or I). 2

DROP_ANY CHAR(1) Whether GRANTEE can drop
objects created by any user (Y, N, R,
or I). 2

CREATE_ANY CHAR(1) Whether GRANTEE can create any
object, including those that use
another’s resources (Y, N, R, or I). 2

LOCK_DATABASE CHAR(1) Whether GRANTEE can lock the
database (Y, N, R, or I). 2

BACKUP_DATABASE CHAR(1) Whether GRANTEE can back up the
database (Y, N, R, or I). 2

RESTORE_DATABASE CHAR(1) Whether GRANTEE can restore the
database (Y, N, R, or I). 2

Column Name Column Type Column Description

1 Task authorizations can be granted to user-created roles.
2 The authorizations are as follows:

■ Y—User has the task authorization.

■ N—User does not have the task authorization.

■ R—User has the task authorization directly through a role.

■ I—User has the task authorization indirectly through a role.

 (3 of 5)
System Tables and Dynamic Statistic Tables C-23

RBW_USERAUTH Table
UPGRADE_DATABASE CHAR(1) Whether GRANTEE can upgrade
the database (Y, N, R, or I). 2

REORG_ANY CHAR(1) Whether GRANTEE can reorganize
any table or index (Y, N, R, or I). 2

OFFLINE_LOAD CHAR(1) Whether GRANTEE can use any
segment as a working segment for
offline loads or synchronize
segments after offline loads (Y, N, R,
or I). 2

ALTER_SYSTEM CHAR(1) Whether GRANTEE can issue the
ALTER SYSTEM statement to
perform database administration
tasks (Y, N, R, or I). 2

ACCESS_SYSINFO CHAR(1) Whether GRANTEE can query the
Dynamic Statistic Tables for
statistics about database activity (Y,
N, R, or I). 2

ALTER_TABLE_INTO_ANY CHAR(1) Whether GRANTEE can alter own
tables into segments for another
users (Y, N, R, or I). 2

CREATE_OWN CHAR(1) Whether GRANTEE can create own
objects: indexes, private macros,
segments, synonyms, tables, and
views (Y, N, R, or I). 2

DROP_OWN CHAR(1) Whether GRANTEE can drop own
objects (Y, N, R, or I). 2

Column Name Column Type Column Description

1 Task authorizations can be granted to user-created roles.
2 The authorizations are as follows:

■ Y—User has the task authorization.

■ N—User does not have the task authorization.

■ R—User has the task authorization directly through a role.

■ I—User has the task authorization indirectly through a role.

 (4 of 5)
C-24 Informix Red Brick Decision Server Administrator’s Guide

RBW_USERAUTH Table
ALTER_OWN CHAR(1) Whether GRANTEE can alter own
indexes, macros, segments,
synonyms, tables, and views (Y, N,
R, or I). 2

GRANT_OWN CHAR(1) Whether GRANTEE can grant
object privileges on own objects to
other users (Y, N, R, or I). 2

IGNORE_QUIESCE CHAR(1) Flag indicating whether a user can
access a quiesced database (Y) or is
locked out (N).

ACCESS_ADVISOR_INFO CHAR(1) Flag indicating whether a user can
query the Advisor system tables (Y)
or not (N).

TEMP_RESOURCE CHAR(1) Flag indicating whether a user has
the authority to create temporary
tables (Y) or not (N).

ISROLE CHAR(1) Whether GRANTEE is a role (Y if a
role; N if a user).

PRIORITY SMALLINT Value between 0 and 100 indicating
user priority for server resources. 0
is high priority; 100, low.

EXPORT CHAR(1) Whether GRANTEE can issue the
EXPORT statement to perform
database administration tasks
(Y, N, R, or I). 2

COMMENT CHAR(256) User-specified comment; NULL if
not set.

Column Name Column Type Column Description

1 Task authorizations can be granted to user-created roles.
2 The authorizations are as follows:

■ Y—User has the task authorization.

■ N—User does not have the task authorization.

■ R—User has the task authorization directly through a role.

■ I—User has the task authorization indirectly through a role.

 (5 of 5)
System Tables and Dynamic Statistic Tables C-25

RBW_VIEWS Table
RBW_VIEWS Table
The RBW_VIEWS table contains the names of all views in the database. When
users display information stored in the RBW_VIEWS table, they see only those
views they created or have permission to access. This table is updated by the
ALTER VIEW, CREATE VIEW and DROP VIEW statements and contains the
following columns.

Column Name Column Type Column Description

NAME CHAR(128) Name of view.

CREATOR CHAR(128) Creator of view.

PRECOMPVIEW CHAR(1) Denotes whether the view is precom-
puted (Y or N).

PRECOMPVIEW_TABLE CHAR(128) Name of the aggregate table associated
with the precomputed view. Indicates
NULL if the view is not a precomputed
view.

DETAIL_TABLE CHAR(128) Denotes the detail table on which the
aggregate table is defined. Indicates
NULL if the view is not a precomputed
view.

VALID CHAR(1) Indicates whether the data in the
aggregate table matches the data in the
detail table. Indicates NULL if the view is
not a precomputed view.

COMMENT CHAR(256) User-specified comment; NULL if not set
with the ALTER VIEW statement.
C-26 Informix Red Brick Decision Server Administrator’s Guide

RBW_VIEWTEXT Table
RBW_VIEWTEXT Table
The RBW_VIEWTEXT table describes the text of all views listed in the
RBW_VIEWS table. When users display information stored in the
RBW_VIEWTEXT table, they see only the text of those views they created or
have permission to access. If the text of a view is longer than 256 characters,
the view text spans multiple rows. This table is updated by CREATE VIEW and
DROP VIEW statements and contains the following columns.

Dynamic Statistic Tables
The Dynamic Statistic Tables (DSTs) are used to help monitor database
activity. The DSTs consist of the following tables:

■ DST_COMMANDS

■ DST_DATABASES

■ DST_LOCKS

■ DST_SESSIONS

■ DST_USERS

Refer to “Monitoring Database Activity with Dynamic Statistic Tables” on
page 8-8 for more information on the DSTs.

Column Name Column Type Column Description

NAME CHAR(128) Name of view.

SEQ INTEGER Sequence number of the view text.

TEXT CHAR(1024) Text of view definition (including CREATE VIEW
keywords).
System Tables and Dynamic Statistic Tables C-27

DST_COMMANDS Table
DST_COMMANDS Table
The DST_COMMANDS table contains information about each command
issued against the database by a currently connected session. This infor-
mation consists of cumulative statistics for each command. Any subprocesses
that the command spawns are included in the statistics calculations.

The following table lists and describes the DST_COMMANDS columns.

Column Name Column Type Description

DBNAME CHAR(128) Logical database name.

UNAME CHAR(128) User name for the user issuing the
command.

NODE_NAME CHAR(128) Name of node on which command is
running (for MPP servers).

PID INTEGER Process ID for session running the
command.

STARTED TIMESTAMP Start time of the command.

STATE CHAR(64) ■ Connecting

■ Idle

■ Executing

■ Returned x rows; computed y rows
(for query)

■ Inserted x rows (for Insert)

■ Deleted x rows (for Delete)

■ Updated x rows (for Update)

COMMAND CHAR(1024) Starting text of current command
prior to macro expansion.

CACHE_READS INTEGER Number of times that a block was
found in local buffer cache (avoiding a
logical read request).

CACHE_WRITES INTEGER Number of times that a block was
found in local buffer cache (avoiding a
logical write request).

 (1 of 3)
C-28 Informix Red Brick Decision Server Administrator’s Guide

DST_COMMANDS Table
LOGICAL_READS INTEGER Number of logical reads performed
by the command.

LOGICAL_WRITES INTEGER Number of logical writes performed
by the command.

PHYSICAL_READS INTEGER Number of physical reads performed
by the command (NULL for platforms
that do not support this statistic).

PHYSICAL_WRITES INTEGER Number of physical writes performed
by the command (NULL for platforms
that do not support this statistic).

SYSTEM_CPUTIME DEC(9,2) System CPU time used by the
command (in seconds).

USER_CPUTIME DEC(9,2) User CPU time used by the command
(in seconds).

SPILL_COUNT INTEGER The number of spill files used in an
operation.

MEMORY_USED INTEGER Amount of memory being used by the
command (in kilobytes).

TEMPSPACE_USED INTEGER Amount of spill space used by the
command (in kilobytes).

PARALLELISM INTEGER Number of parallel tasks being
performed by the command.

TRANSACTION_TYPE CHAR (32) Transaction type for the command.
Possible values: READ_ONLY,
VERSIONING, BLOCKING.

READ_REVISION DECIMAL (10,0) The revision number of the database
being accessed by the transaction.

Column Name Column Type Description

 (2 of 3)
System Tables and Dynamic Statistic Tables C-29

DST_DATABASES Table
DST_DATABASES Table
The DST_DATABASES table contains statistics that indicate the overall level of
activity against a database. It also contains the database location and state
(quiescent or active).

The following table lists and describes all the DST_DATABASES columns.

NEW_REVISION DECIMAL (10,0) The revision number of the database
the transaction creates. NULL for
aborted or uncommitted transactions.

TRANSACTION_
ISOLATION_LEVEL

CHAR (32) The isolation level of the transaction.
Possible values:
REPEATABLE_READ,
SERIALIZABLE.

LAST_UPDATED TIMESTAMP Time stamp of when this row was last
updated.

Column Name Column Type Description

DBNAME CHAR(128) Logical database name.

DBLOCATION CHAR(1024) Database directory path.

CURRENT_CONNECTS INTEGER Current number of connected
sessions.

PEAK_CONNECTS INTEGER Maximum number of concurrent
sessions.

TOTAL_CONNECTS INTEGER Cumulative count of connected
sessions.

TOTAL_FATAL_EXITS INTEGER Number of times a session has
terminated abnormally. This
includes any invalid login attempts
and failed attempts against quiesced
databases.

 (1 of 3)

Column Name Column Type Description

 (3 of 3)
C-30 Informix Red Brick Decision Server Administrator’s Guide

DST_DATABASES Table
TOTAL_COMMANDS INTEGER Number of commands executed
against this database.

QUIESCED CHAR(1) Flag indicating whether the
database is quiesced (Y) or active
(N).

ADMINDB CHAR(1) Flag indicating whether the
database is the administration
database (Y) or a user-created
database (N).

BACKUP_SEGMENT CHAR (128) Name of the backup segment
(populated only if a backup
segment exists for use with Informix
Red Brick SQL-BackTrack).

VERSION_LOG_
SEGMENT

CHAR (128) The name of the segment containing
the version log. NULL if version log
does not exist.

VERSIONING_
STARTED

CHAR (1) Whether versioning is currently
enabled on the database (Y, N, or
NULL if version log does not exist).

ACTIVE_VACUUM_
CLEANERS

INTEGER The number of vacuum cleaner
daemon processes active for the
database (0 or 1). NULL if version
log does not exist.

CURRENT_REVISION DECIMAL (10, 0) The database revision number of the
most recently committed version of
the database. NULL if version log
does not exist.

OLDEST_ACTIVE_
REVISION

DECIMAL (10, 0) The database revision number of the
oldest committed version of the
database having at least one active
read process. NULL if version log
does not exist.

Column Name Column Type Description

 (2 of 3)
System Tables and Dynamic Statistic Tables C-31

DST_DATABASES Table
QUERY_REVISION DECIMAL(10,0) The database revision number being
used by a particular user query. If
the query revision is not set, this
column will be null.

LATEST_MERGED_
REVISION

DECIMAL (10, 0) The database revision number of the
latest version of the database that
has been merged from the version
log to the main database PSUs.
NULL if version log does not exist.

VERSION_LOG_USED INTEGER The amount of disk space (in
kilobytes) used in the version log for
new versions of database blocks.
NULL if version log does not exist.

VERSION_LOG_
AVAILABLE

INTEGER The amount of free disk space (in
kilobytes) available in the version
log. NULL if version log does not
exist.

VERSION_LOG_
MAXIMUM_USED

INTEGER The maximum amount of disk space
(in kilobytes) used in the version
log. Also known as the “high water
mark.” Can be reset with the ALTER
SYSTEM RESET STATISTICS
statement. NULL if version log does
not exist.

MAXREVISIONS INTEGER The maximum number of active
revisions allowed in the database.
NULL if version log does not exist.
Can be changed with an ALTER
DATABASE CREATE VERSION
LOG IN statement.

LAST_UPDATED TIMESTAMP Time stamp of when this row was
last updated.

Column Name Column Type Description

 (3 of 3)
C-32 Informix Red Brick Decision Server Administrator’s Guide

DST_LOCKS Table
DST_LOCKS Table
The DST_LOCKS table contains information about the locks that each session
is holding or waiting for. If the session is waiting for a lock, the DST_LOCKS
table gives some information on the process that is holding that lock
(blocking).

The following table lists and describes the DST_LOCKS columns.

Column Name Column Type Description

DBNAME CHAR(128) Database logical name.

UNAME CHAR(128) User name.

NODE_NAME CHAR(128) Node name where the process is running
(for MPP systems).

PID INTEGER PID of this process.

TNAME CHAR(128) Table being locked (NULL for segment lock).

SEGNAME CHAR(128) Name of the segment for a segment lock
(NULL for table only lock).

DATETIME TIMESTAMP Time of the lock request.

TYPE CHAR(2) Lock type used for the current transaction.
Possible values: read-only (RO), read-key
(RK), read-data (RD), write-blocking (WB),
write-key (WK), and write-data (WD).

BLOCKER_UNAME CHAR(128) Name of user holding lock or NULL if
current process is holding the lock.

BLOCKER_PID INTEGER PID of process holding lock that is blocking
current attempt or NULL if the current
process holds the lock.

BLOCKER_NODE CHAR(128) Node name where the blocking process is
running (for MPP systems) or NULL if the
current process is holding the lock.

LAST_UPDATED TIMESTAMP Timestamp of when this row was last
updated.
System Tables and Dynamic Statistic Tables C-33

DST_SESSIONS Table
DST_SESSIONS Table
The DST_SESSIONS table contains information on each session currently
connected to the database. This information includes both cumulative
statistics over all of the commands issued by the session and peak statistics
(the maximum single command values).

Column Name Column Type Description

DBNAME CHAR(128) Logical database name.

UNAME CHAR(128) Database user name for user
running the session.

PID INTEGER The rbwsvr process ID for the
session.

COMPONENT CHAR(32) SERVER, WORKGROUP
SERVER, TMU, or PTMU.

STARTED TIMESTAMP Start time of the session.

NET_ADDRESS CHAR(32) Network address of client
processes if any

CLIENT_TOOL CHAR(32) Name of client front-end tool or
NULL if no client tool used.

GATEWAY CHAR(128) Gateway identifier or NULL if no
gateway used.

INDEX_TEMPSPACE_
DUPLICATESPILLPERCENT

INTEGER Percentage of the index building
temporary space allocated for
duplicates. Only valid for REORG
operations.

PRIORITY SMALLINT Current priority of this session.

QUERY_MEMORY_LIMIT INTEGER Size at which queries are written
to disk (in 8-kilobyte blocks).

QUERY_TEMPSPACE_

DIRECTORIES

CHAR(1024) Directories for query-related
temporary space.

 (1 of 4)
C-34 Informix Red Brick Decision Server Administrator’s Guide

DST_SESSIONS Table
QUERY_TEMPSPACE_

MAXSPILLSIZE

INTEGER Maximum amount of temporary
space per query (in 8-kilobyte
blocks).

INDEX_TEMPSPACE_
DIRECTORIES

CHAR (1024) Directories for index-building
temporary space.

INDEX_TEMPSPACE_
MAXSPILLSIZE

INTEGER Maximum amount of temporary
space per index-building
operation (in 8-kilobyte blocks).

REPORT_INTERVAL INTEGER Current session reporting interval
(in minutes).

TOTAL_COMMANDS INTEGER Number of statements executed
during this session.

TOTAL_CANCELS INTEGER Number of statements executed
during this session.

TOTAL_CACHE_READS INTEGER Number of times that a block was
found in the local buffer cache
(avoiding a logical read request).

TOTAL_CACHE_WRITES INTEGER Number of times that a block was
found in the local buffer cache
(avoiding logical write requests).

TOTAL_LOGICIAL_READS INTEGER Maximum number of logical reads
performed by this session.

TOTAL_LOGICAL_WRITES INTEGER Number of logical writes
performed by this session.

TOTAL_PHYSICAL_READS INTEGER Maximum number of physical
reads performed by this session
(NULL for platforms that do not
support this statistic).

TOTAL_PHYSICAL_

WRITES

INTEGER Number of physical writes
performed by this session (NULL
for platforms that do not support
this statistic).

Column Name Column Type Description

 (2 of 4)
System Tables and Dynamic Statistic Tables C-35

DST_SESSIONS Table
TOTAL_SYSTEM_CPUTIME DEC(9,2) System CPU time used by this
session (in seconds).

TOTAL_USER_CPUTIME DEC(9,2) User CPU time used by this
session (in seconds).

TOTAL_SPILL_COUNT INTEGER Number of times a spill area was
used by this session.

PEAK_CACHE_READS INTEGER Maximum number of times that a
block was found in local buffer
cache for a single session
command (avoiding logical write
requests).

PEAK_CACHE_WRITES INTEGER Maximum number of times that a
block was found in the local buffer
cache for a single session
(avoiding logical write requests).

PEAK_LOGICIAL_READS INTEGER Maximum number of logical reads
performed by a command within
the current session.

PEAK_LOGICAL_WRITES INTEGER Maximum number of logical
writes performed by a command
within the current session.

PEAK_PHYSICAL_READS INTEGER Maximum number of physical
reads performed by a command
within the current session (NULL
for platforms that do not support
this statistic).

PEAK_PHYSICAL_WRITES INTEGER Maximum number of physical
writes performed by a command
within the current session (NULL
for platforms that do not support
this statistic).

PEAK_SYSTEM_CPUTIME DEC(9,2) Maximum system CPU time used
by this user to access this database
within the session (in seconds).

Column Name Column Type Description

 (3 of 4)
C-36 Informix Red Brick Decision Server Administrator’s Guide

DST_SESSIONS Table
PEAK_USER_CPUTIME DEC(9,2) Maximum user CPU time used by
a command within the session (in
seconds).

PEAK_SPILL_COUNT INTEGER Maximum number of times a spill
area was used by a command
within the current session.

PEAK_PARALLELISM INTEGER Maximum number of parallel
tasks performed by a command
within the session.

PEAK_MEMORY_USED INTEGER Maximum memory (in kilobytes)
used by a single session command
to access this database.

PEAK_TEMPSPACE_USED INTEGER Maximum amount of spill space
(in kilobytes) used by a single
session command to access this
database.

LAST_UPDATED TIMESTAMP Time stamp of when this row was
last updated.

Column Name Column Type Description

 (4 of 4)
System Tables and Dynamic Statistic Tables C-37

DST_USERS Table
DST_USERS Table
The DST_USERS table contains information about each user who has accessed
the database since the server was last started. The statistics for each user can
be reset with an ALTER SYSTEM RESET STATISTICS statement. This infor-
mation includes both cumulative statistics over all of the sessions for a user on
the database and peak statistics—that is, maximum single-session values.

The following table lists and describes the DST_USERS columns.

Column Name Column Type Description

DBNAME CHAR(128) Logical database name.

UNAME CHAR(128) User name.

FIRST_LOGIN TIMESTAMP Time of user’s first access of this
database.

LAST_LOGIN TIMESTAMP Time of user’s most recent access of
this database.

CURRENT_CONNECTS INTEGER Number of currently connected
sessions.

PEAK_CONNECTS INTEGER Maximum number of concurrent
sessions at any time by this user.

TOTAL_CONNECTS INTEGER Total number of connects by this
user.

TOTAL_FATAL_EXITS INTEGER Number of times this user has had
a session terminate abnormally.

TOTAL_COMMANDS INTEGER Total number of commands
executed by this user.

TOTAL_CANCELS INTEGER Number of canceled commands by
this user.

TOTAL_CACHE_READS INTEGER Number of times that a block was
found in local buffer cache
(avoiding a logical read request).

 (1 of 4)
C-38 Informix Red Brick Decision Server Administrator’s Guide

DST_USERS Table
TOTAL_CACHE_WRITES INTEGER Number of times that a block was
found in local buffer cache
(avoiding a logical write request).

TOTAL_LOGICAL_READS INTEGER Number of logical reads performed
by this user on this database.

TOTAL_LOGICAL_WRITES INTEGER Number of logical writes
performed by this user on this
database.

TOTAL_PHYSICAL_READS INTEGER Number of physical reads
performed by this user on this
database (NULL for platforms that
do not support this statistic).

TOTAL_PHYSICAL_WRITES INTEGER Number of physical writes
performed by this user on this
database (NULL for platforms that
do not support this statistic).

TOTAL_SYSTEM_CPUTIME DEC(9,2) Cumulative system CPU time used
by this user to access this database
(in seconds).

TOTAL_USER_CPUTIME DEC(9,2) Cumulative user CPU time used by
this user to access this database (in
seconds).

TOTAL_SPILL_COUNT INTEGER Cumulative count of the number of
times that a spill area was used.

PEAK_CACHE_READS INTEGER Maximum number of times that a
block was found in the local buffer
cache for a single session (avoiding
logical read requests).

PEAK_CACHE_WRITES INTEGER Maximum number of times that a
block was found in the local buffer
cache for a single session (avoiding
logical write requests).

Column Name Column Type Description

 (2 of 4)
System Tables and Dynamic Statistic Tables C-39

DST_USERS Table
PEAK_LOGICIAL_READS INTEGER Maximum number of logical reads
performed by this user on this
database in one session.

PEAK_LOGICAL_WRITES INTEGER Maximum number of logical writes
performed by this user on this
database in one session.

PEAK_PHYSICAL_READS INTEGER Maximum number of physical
reads performed by this user on
this database in one session (NULL
for platforms that do not support
this statistic).

PEAK_PHYSICAL_WRITES INTEGER Maximum number of physical
writes performed by this user on
this database in one session (NULL
for platforms that do not support
this statistic).

PEAK_SYSTEM_CPUTIME DEC(9,2) Maximum system CPU time used
by this user to access this database
in one session (in seconds).

PEAK_USER_CPUTIME DEC(9,2) Maximum user CPU time used by
this user to access this database in
one session (in seconds).

PEAK_SPILL_COUNT INTEGER Maximum number of times that
spill area was used by one session.

PEAK_PARALLELISM INTEGER Maximum number of parallel tasks
performed by this user on this
database in one session.

Column Name Column Type Description

 (3 of 4)
C-40 Informix Red Brick Decision Server Administrator’s Guide

Data Types and Their Sizes
Data Types and Their Sizes
The size in bytes of each data type is defined in the following table.

PEAK_MEMORY_USED INTEGER Maximum memory (in kilobytes)
used by this user to access this
database in one session.

PEAK_TEMPSPACE_USED INTEGER Maximum amount of spill area (in
kilobytes) used by this user in one
session.

LAST_UPDATED TIMESTAMP Time stamp of when this row was
last updated.

Data Types Size in Bytes

CHARACTER Length (number of bytes); maximum is 1,024.

VARCHAR Length (number of bytes) of the literal or expression that
created the value or the fill factor, whichever is greater;
maximum is 1,024; default is 1.

DATE 3

TIME 3 without fractional seconds; 5 with fractional seconds

TIMESTAMP 6 without fractional seconds; 8 with fractional seconds

INTEGER 4 (range: -231 to 231-1; 231 = 2,146,483,648)

SMALLINT 2 (range: -215 to 215 - 1; 215 = 32,768)

TINYINT 1 (range: -27 to 27 - 1; 27 = 128)

FLOAT, DOUBLE 8 (range: approximately 1.E-308 to 1.E308)

REAL 4 (range: approximately 1.E-38 to 1.E37)

 (1 of 2)

Column Name Column Type Description

 (4 of 4)
System Tables and Dynamic Statistic Tables C-41

Data Types and Their Sizes
For definitions and usage of data types, refer to the SQL Reference Guide.

DECIMAL or NUMERIC with precision:

1-2

3-4

5-9

10-11

12-14

15-16

17-18

19-21

22-23

24-26

27-28

29-31

32-33

34-35

36-38

1

2

4

5

6

7

8

9

10

11

12

13

14

15

16

Data Types Size in Bytes

 (2 of 2)
C-42 Informix Red Brick Decision Server Administrator’s Guide

D
Appendix
Example: Using Segments
with Time-Cyclic Data
This example illustrates how multiple segments can be used in a
time-cyclic database. The example includes a simple star schema
with a single STAR index, and the index is segmented in the same
way as the data. The example demonstrates two techniques for
management of time-cyclic data:

■ Rolling off old segments and reusing them with new
data.

■ Creating new segments and adding them to the
database.

This appendix includes the following sections:

■ Background

■ Rolling Off and Reusing Data and Index Segments

■ Adding a New Segment

■ Using an Offline Load Operation

■ Deleting the Oldest Data

■ Reusing the Segments

Background
Background
The database used for this example contains three dimension (referenced)
tables—Period, Product, and Market—and a fact (referencing) table, Sales,
which contains sales data for two full years—eight quarters—plus the
current quarter:

■ Data for the Sales table is divided into quarterly segments, with data
for each quarter residing in a separate user-defined segment.

■ The Sales data for the current quarter is updated daily. At the end of
each quarter, data for the oldest quarter is removed from the table,
data for the current quarter becomes part of the two-year history, and
a new current quarter is started.

■ The Sales table has a user-created index, a STAR index, that resides in
the same number of segments as the Sales table. The automatically
created B-TREE index on the primary key columns has been dropped
because the STAR index serves as the primary key index for the Sales
table.

■ Data and indexes for the dimension tables all reside in default
segments.

■ In the Period table, the primary key (Perkey) is of the DATE data type.

The following figure illustrates the tables used in this example.

Figure D-1
Schema Example

Product table

Perkey

Month
Year
Quarter
Tri

Period table

Market table

Mktkey

Market_desc
District
Region

Prodkey

Prod_desc
Brand
Size

Perkey

Prodkey
Mktkey
Dollars
Weight

Sales table
D-2 Informix Red Brick Decision Server Administrator’s Guide

Background
Assume the database is created during Q1 2001 and loaded with data for
eight full quarters (all of 1999 and 2000) plus data for the current quarter,
which is updated weekly. Q2 2001 is about to start. You have two tasks
approaching:

■ Before Q2 starts, you need to add a new segment to hold Q2 2001
data.

■ After Q2 starts, you need to remove the Q1 1999 data.

Tip: When you are ready to delete the data for the oldest quarter, you need to decide
whether to save the segment for reuse by detaching it from the table and then
reattaching it wherever you want to use it or whether to just drop the segment.
Example: Using Segments with Time-Cyclic Data D-3

The Data Segments
The Data Segments
For the purpose of this example, assume the data segments for the Sales table
are defined as follows.

♦

UNIX

Figure D-2
Sales Table Segments on UNIX

create segment s_1q99
storage ’/disk1/s1’ maxsize 200,
storage ’/disk1/s2’ maxsize 200;

create segment s_2q99
storage ’/disk2/s1’ maxsize 200,
storage ’/disk2/s2’ maxsize 200;

create segment s_3q99
storage ’/disk3/s1’ maxsize 200,
storage ’/disk3/s2’ maxsize 200;

create segment s_4q99
storage ’/disk4/s1’ maxsize 200,
storage ’/disk4/s2’ maxsize 200;

create segment s_1q00
storage ’/disk5/s1’ maxsize 200,
storage ’/disk5/s2’ maxsize 200;

create segment s_2q00
storage ’/disk6/s1’ maxsize 200,
storage ’/disk6/s2’ maxsize 200;

create segment s_3q00
storage ’/disk7/s1’ maxsize 200,
storage ’/disk7/s2’ maxsize 200;

create segment s_4q00
storage ’/disk8/s1’ maxsize 200,
storage ’/disk8/s2’ maxsize 200,
storage ’/disk8/s3’ maxsize 200;

create segment s_1q01
storage ’/disk9/s1’ maxsize 200,
storage ’/disk9/s2’ maxsize 200,
storage ’/disk9/s3’ maxsize 200;

create segment s_max
storage ’/disk10/s_max’ maxsize 16;

s2
s1s_1q99

s_2q99

s_3q99

s_4q99

s_1q00

s_2q00

s_3q00

s_4q00

/disk1

/disk2

/disk3

/disk4

/disk5

/disk6

/disk7

/disk8

These CREATE SEGMENT statements create these segments containing these files

s2
s1

s2
s1

s2
s1

s2
s1

s2
s1

s2
s1

s2
s1

s3

s_1q01 /disk9
s2
s1

s3

s_max /disk10s_max
D-4 Informix Red Brick Decision Server Administrator’s Guide

The Data Segments
For the purpose of this example, assume the data segments for the Sales table
are defined as follows.

♦

WIN NT

Figure D-3
Sales Table Segments on Windows NT

create segment s_1q99
storage ’c:\disk1\s1’ maxsize 200,
storage ’c:\disk1\s2’ maxsize 200;

create segment s_2q99
storage ’g:\disk2\s1’ maxsize 200,
storage ’g:\disk2\s2’ maxsize 200;

create segment s_3q99
storage ’h:\disk3\s1’ maxsize 200,
storage ’h:\disk3\s2’ maxsize 200;

create segment s_4q99
storage ’i:\disk4\s1’ maxsize 200,
storage ’i:\disk4\s2’ maxsize 200;

create segment s_1q00
storage ’j:\disk5\s1’ maxsize 200,
storage ’j:\disk5\s2’ maxsize 200;

create segment s_2q00
storage ’k:\disk6\s1’ maxsize 200,
storage ’k:\disk6\s2’ maxsize 200;

create segment s_3q00
storage ’l:\disk7\s1’ maxsize 200,
storage ’l:\disk7\s2’ maxsize 200;

create segment s_4q00
storage ’m:\disk8\s1’ maxsize 200,
storage ’m:\disk8\s2’ maxsize 200,
storage ’m:\disk8\s3’ maxsize 200;

create segment s_1q01
storage ’n:\disk9\s1’ maxsize 200,
storage ’n:\disk9\s2’ maxsize 200,
storage ’n:\disk9\s3’ maxsize 200;

create segment s_max
storage ’o:\disk10\s_max’ maxsize 16;

s2
s1s_1q99

s_2q99

s_3q99

s_4q99

s_1q00

s_2q00

s_3q00

s_4q00

c:\disk1

g:\disk2

h:\disk3

i:\disk4

j:\disk5

k:\disk6

l:\disk7

m:\disk8

These CREATE SEGMENT statements create these segments containing these files

s2
s1

s2
s1

s2
s1

s2
s1

s2
s1

s2
s1

s2
s1

s3

s_1q01 n:\disk9
s2
s1

s3

s_max o:\disk10
s_max
Example: Using Segments with Time-Cyclic Data D-5

The Data Segments
The last segment, s_max, is an empty segment that is a placeholder at the high
end of the range. This segment remains empty and therefore can be searched
more quickly than a segment containing actual data. (When a segment is
attached, the surrounding segments are searched to verify that they contain
no data that overlaps the new segment range.) While such a segment is not
necessary, its existence allows a new segment to be attached more quickly.

The segments must be created before the tables that use them.
D-6 Informix Red Brick Decision Server Administrator’s Guide

The Index Segments
The Index Segments
For the purpose of this example, assume the index segments for the
Sales_star index are defined as follows.

♦

UNIX

Figure D-4
Sales_star index on UNIX

create segment star_1q99
storage ’/disk1/star1’ maxsize 200,
storage ’/disk1/star2’ maxsize 200;

create segment star_2q99
storage ’/disk2/star1’ maxsize 200,
storage ’/disk2/star2’ maxsize 200;

create segment star_3q99
storage ’/disk3/star1’ maxsize 200,
storage ’/disk3/star2’ maxsize 200;

create segment star_4q99
storage ’/disk4/star1’ maxsize 200,
storage ’/disk4/star2’ maxsize 200;

create segment star_1q00
storage ’/disk5/star1’ maxsize 200,
storage ’/disk5/star2’ maxsize 200;

create segment star_2q00
storage ’/disk6/star1’ maxsize 200,
storage ’/disk6/star2’ maxsize 200;

create segment star_3q00
storage ’/disk7/star1’ maxsize 200,
storage ’/disk7/star2’ maxsize 200;

create segment star_4q00
storage ’/disk8/star1’ maxsize 200,
storage ’/disk8/star2’ maxsize 200,
storage ’/disk8/star3’ maxsize 200;

create segment star_1q01
storage ’/disk9/star1’ maxsize 200,
storage ’/disk9/star2’ maxsize 200,
storage ’/disk9/star3’ maxsize 200;

create segment star_max
storage ’/disk10/star_max’ maxsize 16;

star2
star1star_1q99

star_2q99

star_3q99

star_4q99

star_1q00

star_2q00

star_3q00

star_4q00

/disk1

/disk2

/disk3

/disk4

/disk5

/disk6

/disk7

/disk8

create these segments containing these files

star2
star1

star2
star1

star2
star1

star2
star1

star2
star1

star2
star1

star2
star1

star3

star_1q01 /disk9
star2
star1

star3

star_max /disk10
star_max

TE SEGMENT statements
Example: Using Segments with Time-Cyclic Data D-7

The Index Segments
For the purpose of this example, assume the index segments for the
Sales_star index are defined as follows.

♦

WIN NT

Figure D-5
Sales_star index on Windows NT

create segment star_1q99
storage ’c:\disk1\star1’ maxsize 200,
storage ’c:\disk1\star2’ maxsize 200;

create segment star_2q99
storage ’g:\disk2\star1’ maxsize 200,
storage ’g:\disk2\star2’ maxsize 200;

create segment star_3q99
storage ’h:\disk3\star1’ maxsize 200,
storage ’h:\disk3\star2’ maxsize 200;

create segment star_4q99
storage ’i:\disk4\star1’ maxsize 200,
storage ’i:\disk4\star2’ maxsize 200;

create segment star_1q00
storage ’j:\disk5\star1’ maxsize 200,
storage ’j:\disk5\star2’ maxsize 200;

create segment star_2q00
storage ’k:\disk6\star1’ maxsize 200,
storage ’k:\disk6\star2’ maxsize 200;

create segment star_3q00
storage ’l:\disk7\star1’ maxsize 200,
storage ’l:\disk7\star2’ maxsize 200;

create segment star_4q00
storage ’m:\disk8\star1’ maxsize 200,
storage ’m:\disk8\star2’ maxsize 200,
storage ’m:\disk8\star3’ maxsize 200;

create segment star_1q01
storage ’n:\disk9\star1’ maxsize 200,
storage ’n:\disk9\star2’ maxsize 200,
storage ’n:\disk9\star3’ maxsize 200;

create segment star_max
storage ’o:\disk10\star_max’ maxsize 16;

star_1q99

star_2q99

star_3q99

star_4q99

star_1q00

star_2q00

star_3q00

star_4q00

create these segments

star_1q01

star_max

star2
star1 c:\disk1

g:\disk2

h:\disk3

i:\disk4

j:\disk5

k:\disk6

l:\disk7

m:\disk8

containing these files

star2
star1

star2
star1

star2
star1

star2
star1

star2
star1

star2
star1

star2
star1

star3

n:\disk9
star2
star1

star3

o:\disk10
star_max

These CREATE SEGMENT statements
D-8 Informix Red Brick Decision Server Administrator’s Guide

The Tables
The last segment, star_max, is an empty segment that is a place holder at the
high end of the range. This segment remains empty and therefore can be
searched more quickly than a segment containing actual data. (When a
segment is attached, the surrounding segments are searched to verify that
they contain no data that overlaps the new segment range.) While such a
segment is not necessary, its existence allows a new segment to be attached
more quickly.

Note that the segments must be created before the indexes that use them.

The Tables
Assume the Period table resides in a default segment and is defined as
follows:

create table period (
perkey date not null,
month char (15),
year integer,
quarter integer,
tri integer,
primary key (perkey))
maxrows per segment 2048;

Assume the Sales table was created and segmented by quarters with the
following CREATE TABLE statement. The segment specification assigns the
segments, segmenting column, and ranges of data that can reside in each
segment. The Perkey column is the segmenting column; therefore, the ranges
indicate values in the Perkey column. The range for each segment defines one
quarter, so each quarter of sales data resides in a separate segment.

create table sales (
perkey date not null,
prodkey integer not null,
mktkey integer not null,
dollars decimal (7, 2),
weight smallint,
primary key (perkey, prodkey, mktkey),
foreign key (perkey) references period (perkey),
foreign key (prodkey) references product (prodkey),
foreign key (mktkey) references market (mktkey))
data in (s_1q99, s_2q99, s_3q99, s_4q99, s_1q00, s_2q00,

s_3q00, s_4q00, s_1q01, s_max)
segment by values of (perkey) ranges (

min:DATE’1999-04-01’,
DATE’1999-04-01’:DATE’1999-07-01’,
DATE’1999-07-01’:DATE’1999-10-01’,
Example: Using Segments with Time-Cyclic Data D-9

The STAR Index
DATE’1999-10-01’:DATE’2000-01-01’,
DATE’2000-01-01’:DATE’2000-04-01’,
DATE’2000-04-01’:DATE’2000-07-01’,
DATE’2000-07-01’:DATE’2000-10-01’,
DATE’2000-10-01’:DATE’2001-01-01’,
DATE’2001-01-01’:DATE’2001-04-01’,
DATE’2001-04-01’: max);

The STAR Index
Assume a STAR index covering all of the foreign keys is created on the Sales
table and that the STAR index is segmented exactly like the data; that is, the
index entries corresponding to each row of data in the s_1q99 data segment
are in the star_1q99 index segment, the index entries corresponding to each
row of data in the s_2q99 data segment are in the star_2q99 index segment,
and so on. This is accomplished by specifying the range for each segment to
include only the dates corresponding to a given quarter.

create star index sales_star
on sales (perkey, prodkey, mktkey)
in (star_1q99, star_2q99, star_3q99, star_4q99,

star_1q00,
star_2q00, star_3q00, star_4q00, star_1q00,

star_max)
segment by references of (perkey)
ranges (min:90, 90:181, 181:273, 273:365, 365:455,

455:546,
546:638, 638:730, 730:821, 821:max)

Tip: The ranges in the CREATE INDEX statement refer to row numbers in the refer-
enced table Period, not row numbers in the Sales table. For the complete syntax of the
CREATE INDEX statement, refer to the “SQL Reference Guide.”
D-10 Informix Red Brick Decision Server Administrator’s Guide

The STAR Index
To find the boundaries for the STAR index segment ranges, query the
RBW_ROWNUM pseudocolumn and the primary key column (Date) of the
Period table (if the Period table was segmented, you would also need to find
the segment name that is stored in the RBW_SEGNAME pseudocolumn). The
following query returns the range boundaries for this STAR index:

select rbw_rownum, date
from period
where date = ’04-01-99’

or date = ’07-01-99’
or date = ’10-01-99’
or date = ’01-01-00’
or date = ’04-01-00’
or date = ’07-01-00’
or date = ’10-01-00’
or date = ’01-01-01’
or date = ’04-01-01’;

The constraints on the Date column in the WHERE clause of this query corre-
spond to the range boundaries from the CREATE TABLE statement for the
Sales table.

The following figure illustrates how sales data is mapped to the data
segments and to the STAR index segments.
Example: Using Segments with Time-Cyclic Data D-11

The STAR Index
Each segment includes the lower end of its range but excludes the upper end.
For example, the segment s_1q01 includes the data for 2001-01-01 but does
not include data for 2001-04-01. Similarly, the STAR index segment star_1q01
includes the index entries for 2001-01-01 data but does not include index
entries for 2001-04-01 data.

The last segment, s_max, is designated to contain data with a date of April 1,
2001 or later. At this time, however, the segment is empty because no such
data has yet been loaded.

Figure D-6
Sales Data Mapped to Data and STAR Index Segments

s_1q99

s_2q99

s_3q99

s_4q99

s_1q00

s_2q00

s_3q00

s_4q00

min:DATE’1999-04-01’

DATE’1999-04-01’:DATE’1999-07-01’

DATE’1999-07-01’:DATE’1999-10-01’

DATE’1999-10-01’:DATE’2000-01-01’

DATE’2000-01-01’:DATE’2000-04-01’

DATE’2000-04-01’:DATE’2000-07-01’

Sales data for these ranges

DATE’2000-07-01’:DATE’2000-10-01’

DATE’2000-10-01’:DATE’2001-01-01’

s_1q01DATE’2001-01-01’:DATE’2001-04-1’

s_maxDATE’2001-04-01’:max

star_1q99

star_2q99

star_3q99

star_4q99

star_1q00

star_2q00

star_3q00

star_4q00

star_1q01

star_max

Mapped to these
data segments

Mapped to these
STAR index segments
D-12 Informix Red Brick Decision Server Administrator’s Guide

The Data
The Data
Assume data is loaded into the Sales and Period tables as follows:

load data
inputfile ’period.txt’
replace
separated by ’:’
discardfile ’period_discards’
discards 5
into table period (
perkey date ’MM/Y*/DD’,
month char,
year integer external,
quarter integer external,
tri integer external

);
load data

inputfile ’sales.txt’
replace
separated by ’:’
discardfile ’sales_discards’
discards 5
into table sales (
perkey date ’MM/Y*/DD’,
prodkey integer external,
mktkey integer external,
dollars integer external

);

The Product and Market tables must be loaded before the Sales table;
however, the contents of those tables are not relevant to this example.

The following figure illustrates the data format in the Period and Sales tables
and how the data is distributed among the segments; the index for the Period
table resides in a separate default segment, and the STAR index for the Sales
table is segmented like the data as shown in Figure D-6 on page D-12.

Example: Using Segments with Time-Cyclic Data D-13

The Data
Figure D-7
Data Format for Period and Sales Tables

period.txt

01/92/01:JAN:1992:1:1
01/92/02:JAN:1992:1:1
…
12/00/31:DEC:2000:4:3

default _segment

sales.txt

01/99/01:01:02:890:80
03/99/31:31:19:400:40

04/99/01:21:04:703:71.
s_2q99 DATE'1999-04-01':DATE'1999-07-01'

s_1q99 min:DATE'1999-04-01'

06/99/30:20:10:559:53

s_4q00

s_3q00 DATE'2000-07-01':DATE'2000-10-01'

DATE'2000-10-01':DATE'2001-01-01'

07/00/01:01:04:456:45
09/00/30:10:06:801:81

10/00/01:31:04:225:20
12/00/31:21:10:111:10

…

01/01/01:00:02:725:20
03/01/31:31:19:321:10 s_1q01 DATE'2001-01-01':DATE'2001-04-01'
D-14 Informix Red Brick Decision Server Administrator’s Guide

Rolling Off and Reusing Data and Index Segments
Rolling Off and Reusing Data and Index Segments
Assume that the database holds a rolling nine quarters of data at a time. That
means that when it is time to add the data for the second quarter of 2001, you
can remove the data from the first quarter of 1999. This section shows a
procedure to reuse the s_1q99 data and star_1q99 index segments for the data
and index entries for the second quarter of 2001.

This procedure only works if you have the data and the index(es) segmented
identically, as outlined in the previous section.

To reuse data and index segments for data for another year

1. Take the segment containing the oldest data offline.
alter segment s_1q99 of table sales offline;

2. Detach the segment from the table (this removes all data from the
segment, so make sure that this is what you want to do.).

alter segment s_1q99 of table sales detach
override fullindexcheck on segments (star_1q99);

The OVERRIDE FULLINDEXCHECK clause is designed to take advan-
tage of the fact that all index entries corresponding to the s_1q99 data
segment are stored in the star_1q99 index segment. This dramatically
speeds the performance of the DETACH operation. If your data and
indexes are not identically segmented, do not include the OVERRIDE
FULLINDEXCHECK clause in your DETACH operation. Omitting the
clause ensures that any index entries in other parts of the index are
removed.

3. Take the index segment corresponding to the oldest data offline.
alter segment star_1q99 of index sales_star offline;

4. Detach the index segment from the index (this removes all index
entries from the segment).

alter segment star_1q99 of index sales_star detach;
Example: Using Segments with Time-Cyclic Data D-15

Rolling Off and Reusing Data and Index Segments
5. Rename the old data segment, which will now hold data for the
second quarter of 2001.

alter segment s_1q99 rename s_2q01;

6. Rename the old index segment.
alter segment star_1q99 rename star_2q01;

7. Make any other needed changes to the segments. For example,
change the maximum size or path of a PSU, or add a new PSU to the
segment.

8. Attach the newly renamed data segment to the table.
alter segment s_2q01 attach to table sales

range (DATE’2001-04-01’:DATE’2001-07-01’);

The range of the s_max segment automatically moves to the range.
DATE’2001-07-01’:max

Attaching a segment automatically sets the segment to ONLINE
mode.

The Period table must contain rows corresponding to the days in the
new quarter. Otherwise, new data inserted into the Sales table would
be discarded due to referential integrity failure.

9. Attach the newly renamed index segment to the table.
alter segment star_2q01 attach to index sales_star

range (821:899);

10. You can now use the TMU or SQL INSERT statements to populate the
Sales table with data for the second quarter of 2001.
D-16 Informix Red Brick Decision Server Administrator’s Guide

Adding a New Segment
Adding a New Segment
As the end of Q2 2001 approaches, you want to add another segment between
s_2q01 and s_max to hold data for the next quarter. Because you do not have
any unused segments available, create a segment and attach it to the Sales
table. As data is entered for Q3 2001, it will be placed in this new segment.

If you had an extra segment available, for example, after deleting the oldest
quarter, you could reuse that segment and avoid the work of creating a new
one:

1. Create a new segment named s_3q01.
create segment s_3q01

storage ’/disk10/s1’ maxsize 200,
storage ’/disk10/s2’ maxsize 200,
storage ’/disk10/s3’ maxsize 200;

♦
create segment s_3q01

storage ’c:\disk10\s1’ maxsize 200,
storage ’c:\disk10\s2’ maxsize 200,
storage ’c:\disk10\s3’ maxsize 200;

♦
2. Add the additional Perkey entries to the Period table to cover the

additional date ranges for quarter 3 of 2001. Omitting this step will
cause referential integrity failures when the data for the new quarter
is loaded. For example:

insert into period values
(DATE’2001-07-01’, ’JULY’, 2001, 3, 2);

...
insert into period values

(DATE’2001-08-01’, ’AUG’, 2001, 3, 2);
...
insert into period values

(DATE’2001-09-01’, ’SEPT’, 2001, 3, 3);
...

UNIX

WIN NT
Example: Using Segments with Time-Cyclic Data D-17

Adding a New Segment
3. Attach the s_3q01 segment to the Sales table, specifying the date
range for quarter 3 of 2001.

alter segment s_2q01 attach to table sales
range (DATE’2001-07-01’:DATE’2001-10-01’);

The range of the s_max segment automatically moves to
the range:
DATE’2001-10-01’:max

Attaching a segment automatically sets the segment to ONLINE
mode.

4. Create a new index segment named star_3q01.
create segment star_3q01

storage ’/disk10/star1’ maxsize 200,
storage ’/disk10/star2’ maxsize 200,
storage ’/disk10/star3’ maxsize 200;

♦
create segment star_3q01

storage ’c:\disk10\star1’ maxsize 200,
storage ’c:\disk10\star2’ maxsize 200,
storage ’c:\disk10\star3’ maxsize 200;

♦
5. Attach the new index segment to the index.

alter segment star_3q01 attach to index sales_star
range (899:992);

The following figure illustrates the new segment ranges for the Sales table.

UNIX

WIN NT
D-18 Informix Red Brick Decision Server Administrator’s Guide

Adding a New Segment
Now you can load data into the new segment, using either the standard or
the offline load procedure.

Figure D-8
New Segment Ranges for Sales Table

s_3q99 DATE’1999-07-01:DATE’1999-10-01’

s_1q00

s_2q99 min:DATE’1999-07-01’

s_2q00

s_4q99

s_1q01

s_4q00

s_3q00

DATE’1999-10-01’:DATE’2000-01-01’

DATE’2000-01-01’:DATE’2000-04-01’

DATE’2000-04-01’:DATE’2000-07-01’

DATE’2000-07-01’:DATE’2000-10-01’

DATE’2000-10-01’:DATE’2001-01-01’

DATE’2001-01-01’:DATE’2001-04-01’

s_3q01 DATE’2001-07-01’:DATE’2001-10-01’

s_2q01 DATE’2001-04-01’:DATE’2001-07-01’

New segment

s_max DATE’2001-07-01’:max This segment shifts its
lower boundary and retains
the maximum boundary.

Sales
Example: Using Segments with Time-Cyclic Data D-19

Using an Offline Load Operation
Using an Offline Load Operation
Assume you want to perform an offline load operation to load a batch of data
into the new segment s_3q01.

1. Set the segment to OFFLINE mode:
alter segment s_3q01 of table sales offline;

2. Create an extra segment to provide working space for building
indexes.

create segment work01 storage ’work01’ maxsize 100;

3. Create a TMU control file (s3q01_input) that contains:

■ A LOAD DATA statement to read the data input file
(sales_01_data) and map each field in a column in the offline
segment.

■ A SYNCH statement to synchronize the indexes of the Sales table
with the new data.

load data
inputfile ’sales_01_data’
append
separated by ’:’
discardfile ’discards_sales_01’
discards 3
into offline segment s_3q01 of table sales
working_space work01 (

perkey date ’MM/Y*/DD’,
prodkey integer external,
mktkey integer external,
dollars integer external
);

synch offline segment s_3q01 with table sales
discardfile ’discards_synch’;

Because the SYNCH operation locks the table, you might prefer to
load the data with one control statement and perform the SYNCH
operation with another control statement at another time.

4. Log in as the redbrick user.

5. Verify that the directory redbrick_dir/bin on UNIX or redbrick_dir\bin
on Windows NT is in your path.

6. Change to the directory that contains the s3q01_input file.
D-20 Informix Red Brick Decision Server Administrator’s Guide

Deleting the Oldest Data
7. Invoke the TMU and load the new data by entering the following
command.

rb_tmu -d database_name s_3q01_input system password

The segment s_3q01 now contains the new data.

8. Set the segment s_3q01 to ONLINE mode:
alter segment s_3q01 of table sales online;

9. Drop the working segment:
drop segment work01;

Deleting the Oldest Data
Now you need to remove data for the oldest quarter, the second quarter of
1999, which resides in the s_2q99 segment.

To remove the data

1. If you want to save the data, use the TMU to unload the segment to a
file or tape.

2. Invoke RISQL (or the tool you use for administrative activities),
connecting the database that you want to modify.

3. Set the s_2q99 segment to OFFLINE mode.
alter segment s_2q99 of table sales offline;

4. Detach the s_2q99 segment.
alter segment s_2q99 of table sales detach;

or:
alter segment s_2q99 of table sales detach

override fullindexcheck on segments (star_2q99);

See “Rolling Off and Reusing Data and Index Segments” on
page D-15 for a caution about OVERRIDE FULLINDEXCHECK.

The data that resided in the s_2q99 segment is now deleted from the
database. The segment is detached from the table but still exists
(empty) for reuse. The boundaries of the next segment, s_3q99, auto-
matically change to cover the minimum boundary with a range.

min:DATE’1999-10-01’
Example: Using Segments with Time-Cyclic Data D-21

Deleting the Oldest Data
5. Modify the Period table by deleting the period keys for the old data
(second quarter of 1999).

delete from period where perkey < DATE’1999-07-01’;

6. Detach the star_2q99 index segment.
alter segment star_2q99 of index sales_star detach;

7. You can either save these segments for reuse or drop them with
DROP statements.

drop segment s_2q99;
drop segment star2q99;
D-22 Informix Red Brick Decision Server Administrator’s Guide

Deleting the Oldest Data
The ranges are now as follows.

Figure D-9
Segments and Data Ranges for Sales Table

s_3q99 DATE’1999-10-01’:DATE’2000-01-01’

s_1q00

s_3q99 min:DATE’1999-10-01’

s_2q00

s_1q01

s_4q00

s_3q00

DATE’2000-01-01’:DATE’2000-04-01’

DATE’2000-04-01’:DATE’2000-07-01’

DATE’2000-07-01’:DATE’2000-10-01’

DATE’2000-10-01’:DATE’2001-01-01’

DATE’2001-01-01’:DATE’2001-04-01’

s_3q01 DATE’2001-07-01’:DATE’2001-10-01’

s_2q01 DATE’2001-04-01’:DATE’2001-07-01’

s_max DATE’2001-10-01’:max

Sales

The s_2q99 segment is detached

the database. The next segment
covers the minimum range.

from the table and dropped from
Example: Using Segments with Time-Cyclic Data D-23

Reusing the Segments
Reusing the Segments
If you chose not to drop the old segment s_2q99, you can reuse it when you
need a new segment for Q4 2001 data.

To reuse the segment

1. If you want to rename this segment, use the ALTER SEGMENT
statement.

alter segment s_2q99 rename s_4q01;

2. Attach it to the Sales table with the new range.
alter segment s_4q01 attach to table sales

 range (DATE’2001-10-01’:DATE’1998-01-01’);

The Period table must contain rows corresponding to the days in the
new quarter. Otherwise, new data inserted into the Sales table would
be discarded due to referential integrity failure.

3. Make any other needed changes; for example, MAXSIZE, PATH, or
adding new storage.

4. Rename the old index segment.
alter segment star_2q99 rename star_4q01;

5. Make any other needed changes to the segments; for example,
MAXSIZE, PATH, or adding new storage.

6. Attach the newly renamed index segment to the table.
alter segment star_4q01 attach to index sales_star

range (992:1084);

7. The data and index segments are now ready to load data either using
the TMU or with INSERT statements.
D-24 Informix Red Brick Decision Server Administrator’s Guide

@

Index

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
Index
A
access authorizations 2-36,

7-3 to 7-37
ACCESS_ADVISOR_INFO task

authorization 7-12
ACCESS_ANY task

authorization 7-12
ACCESS_SYSINFO task

authorization 7-12, 8-6
accounting

changing modes 8-46
configuring 8-43
files 8-41
job mode 8-40
overview 8-39
process 8-40
rbwlogd daemon 8-40
record format 8-41
records 8-41
sample code for 8-41
setting mode 8-44
starting 8-45
startup state 8-43
stopping 8-46
switching files 8-46
workload mode 8-40

ACCOUNTING configuration
parameter 8-43

rbw.config file entry B-20
accounting file

location 8-42, 8-43
removing 8-42
size 8-41, 8-44
switching 8-46

accounts. See user accounts.

ACCT_DIRECTORY configuration
parameter 8-43

rbw.config file entry B-20
use with accounting files 8-42

ACCT_LEVEL configuration
parameter

described 8-44
rbw.config file entry B-21

ACCT_MAXSIZE configuration
parameter 8-44

rbw.config file entry B-20
use with accounting files 8-41

ADD STORAGE clause, ALTER
SEGMENT statement,
usage 9-22

ADMIN ADVISOR_LOGGING
parameter 8-34

modifying 9-45, 9-47
rbw.config file entry B-22

ADMIN database
described 8-6
rbw.config file entry B-23

ADMIN parameters,
modifying 9-48

administration daemon
output 2-36
See also rbwadmd daemon.

administration database 8-6
administration of databases,

overview 1-15
administrative account. See

redbrick user account.
Administrator tool 1-8, 2-24
Advisor

described 2-13
log files, removing 8-33

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
log files, specifying size of 8-38
logging 8-32

advisor operator 10-46
ADVISOR_LOGGING, ADMIN

parameter 8-34, B-22
ADVISOR_LOGGING, OPTION

parameter 8-36, B-13
ADVISOR_LOG_DIRECTORY

configuration parameter
rbw.config file entry B-22
use with log files 8-33

ADVISOR_LOG_MAXSIZE
configuration parameter 8-38

rbw.config file entry B-22
use with log files 8-32

aggregate tables
described 2-13
example 3-29

ALLOW_POSSIBLE_DEADLOCKS
parameter

modifying 9-46, 9-48
rbw.config file entry B-13
syntax and usage 9-11

ALTER SYSTEM statement
activating a database 8-13
Advisor logging 8-35
changing modes 8-46
clauses

ADVISOR_LOGGING 8-35
CANCEL USER

COMMAND 8-13
CHANGE ACCOUNTING

LEVEL 8-46
CHANGE LOGGING

LEVEL 8-31
CHANGE USER

PRIORITY 8-14
CLOSE USER SESSION 8-14
QUIESCE DATABASE 8-12
RESET STATISTICS 8-13
RESUME DATABASE 8-13
START ACCOUNTING 8-45
START LOGGING 8-31
STOP ACCOUNTING 8-46
STOP LOGGING 8-31
SWITCH ACCOUNTING

FILE 8-46
SWITCH LOGGING FILE 8-31

SWITCH_ADVISOR_LOG_
FILE 8-35

TERMINATE LOGGING
DAEMON 8-31

closing a session 8-14
required authorizations 8-12

ALTER TABLE statement
adding column 9-34
adding foreign key 9-37
cascade deletes 9-35
changing default value 9-34
DROP CONSTRAINT clause 9-37
dropping column 9-34
interrupted operations 9-38
ON DELETE clause 9-35
renaming column 9-34
usage 9-33

ALTER USER statement 8-14
ALTER_ANY task

authorization 7-12
ALTER_OWN task

authorization 7-14
ALTER_SYSTEM task

authorization 7-12, 8-6
ALTER_TABLE_INTO_ANY task

authorization 7-14
ARITHABORT parameter

modifying 9-46, 9-48
rbw.config file entry B-13

arithmetic errors, options B-13
Aroma database

building, tutorial A-1 to A-28
installation 1-21
rbw.config file entry B-23

ASCII character set 2-28
associative tables 3-12
attributes, influence on schema

design 3-25
audit events 8-25
auditing. See event logging.
authorizations. See task

authorizations.
Automatic Row Generation, TMU

and referential integrity 2-39
AUTOROWGEN parameter

modifying 9-47, 9-48
rbw.config file entry B-13

AUTO_AGGREGATE license,
rbw.config file entry B-15

AUTO_INVALIDATE_
PRECOMPUTED_ VIEW
parameter

modifying 9-46, 9-48
rbw.config file entry B-14

B
backup operations

during index creation 5-15
on versioned databases 6-20

backup procedures 1-20
BACKUP RESTORE license,

rbw.config file entry B-15
backup segment 9-22
BACKUP_DATABASE task

authorization 7-12
binary character comparisons 2-28
bit vector sort operator 10-48
block, 8-kilobyte 9-15
browsing dimension tables 3-24
B-TREE 1-1 match operator 10-46
B-TREE indexes. See indexes,

B-TREE.
B-TREE scan operator 10-47
buffer cache size 10-18

C
cache I/O statistics 8-9
CASCADE keyword, usage 5-14
cascaded delete operations 2-40,

5-14
cases, tracked by technical

support Intro-13
CATEGORY value, macro 5-21
cautions

FORCE INTACT for
segments 9-27

OVERRIDE
FULLINDEXCHECK D-15

OVERRIDE REFCHECK 5-14
CHANGE MAXSIZE clause,

ALTER SEGMENT
statement 9-22

CHANGE PATH clause, ALTER
SEGMENT statement 9-22

character data 2-28
2 Informix Red Brick Decision Server Administrator’s Guide

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
character encoding. See character
set.

character set
ASCII 2-28
conversions 2-32, 2-34
defined 2-28
effect of changing 2-31

CHECK INDEX
obtaining size information 9-13

check operator 10-48
CHECK TABLE

checking table structure 9-13
VARCHAR fill factor 10-34
VERBOSE option 10-34

choose plan operator 10-48
cleanup, temporary space 10-17
CLEANUP_SCRIPT parameter

modifying file 9-45, 9-47
rbw.config file entry B-12
syntax and usage 10-17

client tools
locales for 2-32
RISQL Entry Tool and RISQL

Reporter 2-32
third-party 2-32

client/server environment
compatibility 2-34
different locales in 2-31

code page 2-28
See also character set.

collation sequence 2-28
columns

adding 9-34
changing data type 9-36
default values, changing 9-34
dropping 9-34
estimating width 4-21
renaming 9-34

comment icons Intro-10
COMMENT value, macro 5-21
commit operation 9-6
complete family, defined 2-40
configuration file

described B-1
entries in B-11
examples B-2

modifying 9-45
parameter summary B-24

configuration parameter
ACCOUNTING 8-43, B-20
ACCT_DIRECTORY 8-42, 8-43,

B-20
ACCT_LEVEL 8-44, B-21
ACCT_MAXSIZE 8-41, 8-44, B-20
ADMIN ADVISOR_

LOGGING 8-34
ADVISOR_LOG_DIRECTORY

8-33
ADVISOR_LOG_MAXSIZE 8-32,

8-38, B-22
ALLOW_POSSIBLE_

DEADLOCKS 9-46, B-13
ARITHABORT B-13
AUTOROWGEN B-13
AUTO_INVALIDATE_

PRECOMPUTED_VIEW B-14
CLEANUP_SCRIPT 9-45, B-12
COUNT_RESULT B-13
CROSS_JOIN 9-46, B-13
DEFAULT_DATA_SEGMENT

B-19
DEFAULT_INDEX_SEGMENT

B-19
FILE_GROUP B-17
FILLFACTOR B-17
FORCE_AGGREGATION_

TASKS B-17
FORCE_FETCH_TASKS 11-5,

B-16
FORCE_HASHJOIN_TASKS

B-17
FORCE_JOIN_TASKS 11-5, B-17
FORCE_SCAN_TASKS 11-5,

B-16
GRANT_TEMP_RESOURCE_

TO_ALL B-20
IGNORE_OPTICAL_INDEXES

9-32, B-20
IGNORE_PARTIAL_INDEXES

B-20
INDEX_TEMPSPACE_

DIRECTORY, 4-37
INDEX_TEMPSPACE_

MAXSPILLSIZE 4-37

INDEX_TEMPSPACE_
THRESHOLD 4-37, 4-38

INFO_MESSAGE_LIMIT B-19
INTERVAL B-12
LOCALE B-12
LOGFILE_SIZE B-12
LOGGING 8-28, B-21
LOG_AUDIT_LEVEL 8-30, B-21
LOG_DIRECTORY 8-27, 8-28,

B-21
LOG_ERROR_LEVEL 8-30, B-21
LOG_MAXSIZE 8-27, 8-29, B-21
LOG_OPERATIONAL_LEVEL

8-30, B-21
LOG_SCHEMA_LEVEL 8-30,

B-21
LOG_USAGE_LEVEL 8-30, B-21
MAPFILE B-11
MAXROWS PER

SEGMENT 4-26, 10-29, 10-33
MAXSEGMENTS 4-26
MAXSPILLSIZE B-18
MAX_ACTIVE_DATABASES

B-12
MAX_SERVERS B-11
MESSAGE_DIR B-12
NLS_LOCALE LOCALE 2-30
NLS_LOCALE

MESSAGE_DIR 2-35
OPTICAL_AVAILABILITY 9-31,

B-20
OPTION ADVISOR_

LOGGING 8-36, B-13
PARALLEL_HASHJOIN B-17
PARTIAL_AVAILABILITY B-20
PARTITIONED_PARALLEL_

AGGREGATION B-17
PRECOMPUTED_VIEW_

QUERY_ REWRITE B-13
PROCESS_CHECKING_

INTERVAL B-12
QUERYPROCS B-16
QUERY_MEMORY_LIMIT B-18
RENICE_COMMAND 8-15, B-22
REPORT_INTERVAL 8-17, B-21
TEMPORARY_DATA_

SEGMENT B-19
TEMPORARY_INDEX_

SEGMENT B-19
Index 3

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
THRESHOLD B-18
UNIFORM_PROBABILITY_

FOR_ADVISOR B-13
USE_INVALIDATE_

PRECOMPUTED_
VIEWS B-14

See also individual parameter
names; INDEX_TEMPSPACE
parameters.

CONNECT system role,
described 2-37, 7-7

connections limit
changing 9-45
rbw.config file entry B-11

CONSTRAINT keyword 5-13
constraints, weakly selective 4-10
contact information Intro-17
control-c coordination thread 1-14
controlling database activity 8-12
conventions

syntax diagrams Intro-7
syntax notation Intro-6

copy management utility 8-5
correlated subquery 10-78
costs, of version log 6-6
COUNT function B-13
COUNT_RESULT parameter,

rbw.config file entry B-13
CPUs, allocation for parallel

queries 11-39
CREATE INDEX statement,

usage 5-15
CREATE MACRO statement,

usage 5-20
CREATE ROLE statement,

usage 7-15
CREATE SEGMENT statement,

usage 5-11
CREATE TABLE statement

constraint names 5-13
examples A-9
usage 5-12

CREATE VIEW statement,
usage 5-18

CREATE_ANY task
authorization 7-12

CREATE_OWN task
authorization 7-14

creating a database, Aroma
tutorial A-1 to A-28

cross-reference tables 3-12
CROSS_JOIN parameter

modifying 9-46
rbw.config file entry B-13

CURRENT_USER, SQL
variable 5-19

custom roles. See user-created roles.

D
daemon processes. See processes.
data

aggregation 3-29
organizing 4-3

data types
changing column 9-36
sizes C-41

database administrator
DBA account 2-36
role 1-20

DBA system role
See also database administrator.

database directory, defined 2-14
databases

access to 7-3 to 7-37
activating 8-13
adding new 5-7
adding users 7-6
changing passwords 7-7, A-8
controlling activity 8-12
copying 9-26, 9-40
creating 1-16

example, Aroma A-1 to A-28
procedure 5-3 to 5-23

default segment location 5-11
deleting 1-16, 9-58
design 1-16
dropping database objects 9-54,

9-57
growth patterns 4-48
implementing 1-16, 2-5
limits and maximum sizes 1-21
loading data A-24
locking 9-6
logical names 2-15

defining 5-7

rbw.config file entry B-23
maintaining 1-20
monitoring activity 8-8
moving 9-26, 9-40
organizing data into tables 4-3
password security 7-27 to 7-37
quiesce 8-12
sizing example, database 4-27
system account and password 5-8
table and index sizes,

estimating 4-20
tuning 1-20
when to lock 9-9

data, referential integrity
during delete 2-40, 5-14
during insert and load 2-39

DBA system role
described 2-37, 7-7
granting 7-9, 7-18
revoking 7-9, 7-22

DBA. See database administrator.
dbcreate utility

deleting databases 9-58
example A-7

dbsize 4-22
deadlocks 9-11
decision-support databases 3-5
DEFAULT_DATA_SEGMENT

parameter
modifying 9-46, 9-48
rbw.config file entry B-19
syntax and usage 10-22
with multiple databases 5-11

DEFAULT_INDEX_SEGMENT
parameter

modifying 9-46, 9-48
rbw.config file entry B-19
syntax and usage 10-22
with multiple databases 5-11

delete cascade operator 10-49
DELETE operations

locking tables 9-9
modes, actions 5-14
versioned 6-11

delete operator 10-48
delete refcheck operator 10-49
demonstration database, script to

install Intro-4
dependencies, software Intro-4
4 Informix Red Brick Decision Server Administrator’s Guide

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
design of databases 1-16
dimension table 3-8

large 4-16
directories for temporary

space 4-35, 4-44
disk groups

defining 11-6
effect on parallel queries 11-35
specifying processes 11-8

disk space
allocation 4-48, 5-11
offline load requirements 4-40
organizing with segmented

storage 4-45
reuse 9-16
table and index sizes,

estimating 4-20
table growth, planning for 4-48
temporary space requirements,

estimating 4-37 to 4-44
disk spill files, removing 10-17
disk usage, parallel queries 11-37
divide-by-zero errors, options B-13
documentation

list for Red Brick Decision
Server Intro-14

on-line manuals Intro-16
printed manuals Intro-17

domains, for TARGET indexes
defined 4-10
specifying size 4-11
use with TARGETjoin 4-19

DROP ROLE statement, usage 9-56
DROP statement 9-55
DROP_ANY task

authorization 7-12
DROP_OWN task

authorization 7-14
DST_COMMANDS table C-28
DST_DATABASES table

column names C-30
version log space 6-20

DST_LOCKS table C-33
DST_SESSIONS table C-34
DST_USERS table C-38

dynamic statistic tables
and RBW_TABLES table 8-8
DST_COMMANDS C-28
DST_DATABASES C-30
DST_LOCKS C-33
DST_SESSIONS C-34
DST_USERS C-38
overview 8-8
refresh interval 8-17
statistic collection interval 8-16

E
environment variables

RB_CONFIG 2-24
RB_DSN 2-24
RB_EXE 2-24
RB_HOME 2-24
RB_HOST 2-24
RB_NLS_LOCALE 2-32
RB_PATH 2-24
RISQL Entry Tool 7-4
user accounts 7-4

error events 8-25
event logging

categories 8-24, 8-25
changing severity 8-31
configuring 8-28
log daemon 8-18
log files 8-27
logging subsystem 8-18
message templates 8-20
messages 8-24
overview 8-18
severity levels 8-24
starting 8-31
startup state 8-28
USAGE ROUTINE 8-26

exchange operator 10-50
execute operator 10-50
EXPAND statement 5-23
expiration, passwords 7-28
expired user accounts 7-29
EXPLAIN statement 10-55
EXPORT task authorization 7-12
extended star schema 3-22

F
fact table 3-8, 3-25
fact-to-fact joins

rules for STARjoin 4-5
using synonyms with 10-75

feature icons Intro-11
features of this product,

new Intro-5
file-system-full messages 9-13
FILE_GROUP parameter

described 11-4
modifying 9-46
rbw.config file entry B-17
syntax and usage 11-6

fill factors, index
changing 10-40
described 4-23
effect on key size 10-41
setting 10-37

FILLFACTOR parameters
modifying 9-47, 9-48, 10-36, 10-42
rbw.config file entries B-17

Findserver utility
INTERVAL B-12
usage 9-51

FOR DELETE option 9-9
FORCE INTACT to verify

segment 9-27
FORCE_AGGREGATION_TASKS

parameter
described 11-5
modifying 9-46
rbw.config file entry B-17

FORCE_FETCH_TASKS parameter
described 11-4
modifying 9-46
rbw.config file entry B-16

FORCE_HASHJOIN_TASKS
parameter

described 11-32
modifying 9-46
rbw.config file entry B-17

FORCE_JOIN_TASKS parameter
described 11-4
modifying 9-46
rbw.config file entry B-17
Index 5

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
FORCE_SCAN_TASKS parameter
described 11-4, 11-5
modifying 9-46
rbw.config file entry B-16

FOREIGN KEY REFERENCES
clause, relating tables 4-48

foreign keys
adding and dropping 9-37
defined 3-8
multi-column 3-12, 4-17

frozen versions
backup considerations 6-21
controlling 6-18

functional join operator 10-50

G
general purpose operator 10-51
GRANT authorization and role

command
examples 7-19
usage 7-9, 7-18

GRANT CONNECT statement 7-6
GRANT privilege statement

examples 7-17
usage 7-10

GRANT_OWN task
authorization 7-14

GRANT_TABLE task
authorization 7-13

GRANT_TEMP_RESOURCE_TO_
ALL parameter, rbw.config file
entry B-20

GROUP parameter
described 11-4
syntax and usage 11-8

GUI tool, Administrator 2-24

H
hash 1-1 match operator 10-51
hash AVL aggregate operator 10-51
hash join 4-12

I
icons

feature Intro-11
important Intro-10
platform Intro-11
tip Intro-10
warning Intro-10

IGNORE_OPTICAL_INDEXES
parameter

rbw.config file entry B-20
syntax and usage 9-32

IGNORE_PARTIAL_INDEXES
parameter

modifying 9-46, 9-48
rbw.config file entry B-20
syntax and usage 10-27

IGNORE_QUIESCE task
authorization 7-13

immediate family, defined 2-40
important paragraphs, icon

for Intro-10
incremental loading 6-5
indexes

B-TREE
defined 2-6
example 4-9
size estimates 4-26

creation guidelines 5-15
dropping 9-55
estimating sizes 4-23
growth, monitoring 9-13
loading tables with 5-17
overview 2-6
parallel 5-16
partial availability 10-27
segmenting column 9-24
selection 10-27
selection with optical

segments 9-32
STAR

creating 5-17
defined 2-6
effect of adding rows 4-48
examples 4-7
fill factor, changing 10-42
invalid, cause 4-48

multiple 2-6
performance with 10-42
size estimates 4-26
size without MAXROWS PER

SEGMENT 4-48
use of MAXROWS PER

SEGMENT parameter 5-12
use of MAXSEGMENTS

parameter 5-12
with simple star schema 3-8

TARGET
choosing domain size 4-11
defined 2-6
domains, defined 4-10
example 4-10
hybrid 4-11, 4-19
overview 5-18
performance 5-18
selectivity 4-10
size estimates 4-27
temporary space

requirements 4-42
use with TARGETjoin 4-13

verifying creation 5-17
when to create 4-4

INDEX_TEMPSPACE parameters
current values 10-17
described 4-36
determining values for 4-36
DIRECTORY 4-37
DIRECTORY(IES)

location 5-15
rbw.config file entries B-18
use of 10-9

INDEX_TEMPSPACE_
DIRECTORY 10-12

INDEX_TEMPSPACE_
MAXSPILLSIZE 10-12

INDEX_TEMPSPACE_
THRESHOLD 10-12

MAXSPILLSIZE 4-37
determining size 4-39
for offline load 4-41
rbw.config file entries B-18

modifying 9-47, 9-48
resetting 10-15
setting 10-7
6 Informix Red Brick Decision Server Administrator’s Guide

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
THRESHOLD 4-37
determining value 4-38
rbw.config file entries B-18
syntax 10-14
value 10-14

use in offline load operations 4-40
indirect role membership

defined 7-11
example 7-20, 7-24
usage 7-18

Informix customer
support Intro-12

INFO_MESSAGE_LIMIT
parameter, rbw.config file
entries B-19

initialization files 1-17, 2-21
insert operator 10-52
installation, defining locale

during 2-30
installing server 1-15, 2-20
interdimensional OR queries 10-78
INTERVAL parameter

modifying 9-45
rbw.config file entry B-12
usage 9-51

invalid STAR indexes 4-48
isolation level 9-11
I/O contention, parallel

queries 11-37

J
Java database connectivity 1-9
JDBC API 1-9
JDBC Driver 1-9
job accounting 8-40
joins

algorithms 10-43
between fact tables, indexes

for 4-5
foreign key references 2-6
relating tables 4-48

K
keywords in syntax

diagrams Intro-9

L
language

defined 2-27
effect of changing 2-31, 2-35
nontranslated text 2-31

lexical character comparisons 2-29
licensed options

enabling 1-16, 9-45, 9-47
rbw.config file entries B-15

LICENSE_KEY entries in
rbw.config B-15

limits, server 1-21
linguistic character

comparisons 2-29
listener thread 1-14
LOAD DATA statement examples,

Aroma database A-17 to A-25
load window 6-4
loading data

examples, Aroma
database A-17 to A-27

incrementally 6-5
overview 1-18
time-cyclic data,

example D-1 to D-24
trailing blanks 1-19
with indexes 5-17
with periodic commit 6-5
with VARCHAR columns 1-19

loading tables, with indexes 5-17
LOCALE parameter

modifying 9-45, 9-47
rbw.config file entry B-12

locales
character set component 2-28
client tool 2-32
client/server environment 2-31
components of 2-26
default 2-30, 2-33
defining during installation 2-30
language component 2-27
overriding server 2-31
sort component 2-28
system table references 2-30
territory component 2-27

locked user accounts 7-36

locking
types of table locks 9-7
wait behavior, changing 9-10
when to lock tables and

databases 9-6
lock-out period, specifying 7-36
LOCK_DATABASE task

authorization 7-13
log daemon process 1-13
log daemon. See rbwlogd daemon.
log files

Advisor 8-33
naming conventions 8-27, 8-33
removing 8-27
specifying location 8-28
specifying size 8-29
switching 8-31
types on UNIX 9-52
types on Windows NT 9-52

log viewer
syntax 8-21
usage 8-22

LOG _MAXSIZE configuration
parameter 8-27

logdview executable 8-20
LOGFILE_SIZE parameter

modifying 9-45, 9-47
rbw.config file entry B-12

LOGGING configuration
parameter 8-28

rbw.config file entry B-21
logging queries 8-32
logging. See event logging.
logical database names

defining 5-7
described 2-15
rbw.config file entries B-23

logical I/O statistics 8-9
LOG_AUDIT_LEVEL

configuration parameter 8-30
rbw.config file entry B-21

LOG_DIRECTORY configuration
parameter 8-28

rbw.config file entry B-21
usage 8-27

LOG_ERROR_LEVEL
configuration parameter 8-30

rbw.config file entry B-21
Index 7

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
LOG_MAXSIZE configuration
parameter 8-29

rbw.config file entry B-21
LOG_OPERATIONAL_LEVEL

configuration parameter 8-30
rbw.config file entry B-21

LOG_SCHEMA_LEVEL
configuration parameter 8-30

rbw.config file entry B-21
LOG_USAGE_LEVEL

configuration parameter 8-30
rbw.config file entry B-21

M
macros 1-18

creation and use 5-20
dropping 9-56
examples 5-22
EXPAND statement 5-23
resolving references 5-22
scope 5-21

maintaining database 1-20
many-to-many relationship

defined by fact table 3-12
defined by multi-column foreign

key 3-12
many-to-one relationship, foreign

keys 3-9
MAPFILE parameter

changing 9-45
rbw.config file entry B-11

MAXROWS PER SEGMENT
and VARCHAR fill factor 5-13
error message 5-13
in TARGET indexes 4-27
rows per block 10-33

MAXROWS PER SEGMENT
parameter

changing value 9-35
effect on STAR indexes 4-26
forcing REORG operation 5-12
usage 5-12
value in RBW_TABLES C-20

MAXSEGMENTS parameter
changing value 9-35
effect on STAR indexes 4-26
forcing REORG operation 5-12

usage 5-12
value in RBW_TABLES C-20

MAXSIZE value, in
RBW_STORAGE table 9-15

MAXSIZE value, in RBW_TABLES
table 9-25

MAXSIZE_ROWS value, in
RBW_TABLES table C-20

MAXSPILLSIZE value
estimating, for queries 4-44
for INDEX_TEMPSPACE 4-39
for query temporary slices 4-44
syntax 10-14

MAX_ACTIVE_DATABASES
parameter

changing 9-45, 9-47
rbw.config file entry B-12

MAX_SERVERS parameter
changing 9-45, 9-47
rbw.config file entry B-11

membership, roles 7-11
memory use

loading and index
requirements 4-37 to 4-44

parallel queries 11-38
merge phase of optimized index

build 4-37
merge sort operator 10-52
message files 2-35
message templates 8-20
messages

internal, not translated 2-35
translated 2-35

MESSAGE_DIR parameter
modifying 9-45, 9-47
rbw.config file entry B-12

Microsoft Access, database access
with 7-5

MIGRATE TO clause, ALTER
SEGMENT statement 9-24

MODIFY_ANY task
authorization 7-13

monitoring
database activity 8-8
frozen versions 6-18
growth of tables and indexes 9-13
server processes 9-49
VARCHAR fill factor 10-34
version log space 6-20

monitoring database activity 8-8
multibyte character sets 2-28
multiple databases, default

segment location 5-11
multi-star schema 3-14

N
naive 1-1 match operator 10-52
new features of this product Intro-5
NLS_LOCALE entries in

rbw.config B-12
NLS_LOCALE LOCALE

parameter 2-30
NLS_LOCALE MESSAGE_DIR

parameter 2-35
NO ACTION keyword

described 2-41
usage 5-14

NO WAIT on locks 9-10
notation conventions Intro-5
NULL values, in ORDER BY

clauses 2-22

O
object privileges

defined 7-9
granting 7-9
granting to roles 7-17
overview 2-37

ODBC client application
requirements 7-5

ODBC driver 1-8
.odbc.ini file 2-23
offline load operations

example D-20
space-planning 4-40

OFFLINE_LOAD task
authorization 7-13

on-line manuals Intro-16
online transaction-processing

databases (OLTP) 3-4
operational events 8-26
operators

advisor 10-46
bit vector sort 10-48
B-TREE 1-1 match 10-46
8 Informix Red Brick Decision Server Administrator’s Guide

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
B-TREE scan 10-47
check 10-48
choose plan 10-48
defined 10-46
delete 10-48
delete cascade 10-49
delete refcheck 10-49
exchange 10-50
execute 10-50
functional join 10-50
general purpose 10-51
hash 1-1 match 10-51
hash AVL aggregate 10-51
insert 10-52
merge sort 10-52
naive 1-1 match 10-52
RISQL calculate 10-52
simple merge 10-52
sort 1-1 match 10-53
STARjoin 10-53
subquery 10-53
table scan 10-54
TARGET scan 10-54
TARGETjoin 10-54
update 10-55
virtual table scan 10-55

optical segments
defined 9-30
index selection 9-32

optical storage support 9-29 to 9-31
OPTICAL_AVAILABILITY

parameter
rbw.config file entry B-20
syntax and usage 9-31

OPTION ADVISOR_LOGGING
parameter 8-36

modifying 9-46, 9-48
rbw.config file entry B-13

OPTION parameters
ADVISOR_LOGGING B-13
ALLOW_POSSIBLE_

DEADLOCK B-13
ARITHABORT B-13
AUTOROWGEN B-13
COUNT_RESULT B-13
CROSS_JOIN B-13

IGNORE_OPTICAL_INDEXES
9-32

in rbw.config file B-13
OPTICAL_AVAILABILITY 9-31

options, licensed
enabling 1-16, 9-53
rbw.config file entries B-15

OR versus UNION operation 10-78
outboard tables 3-13
out-of-memory errors 4-38, 5-16
out-of-space errors 4-39
outrigger tables 3-13
OVERRIDE FULLINDEXCHECK

clause
caution D-15
example D-15

OVERRIDE REFCHECK clause
caution 2-40
usage 5-14

P
parallel indexes 5-16
parallel processing

on demand 11-4
overview 2-5
tuning for specific query

types 11-41
parallel queries, allocating tasks

for 11-29 to 11-31
parallel query processing

enabling 11-5
join phase 11-18
limiting processes 11-10
minimum row

requirements 11-13
number of PSUs 4-47
reducing disk contention 11-6
STARjoin 11-17
system limitations 11-35
tuning 11-3 to 11-46

PARALLEL_HASHJOIN
parameter

enabling parallel hash joins 11-32
rbw.config file entry B-17

parameters
specifying 10-6
tuning 11-4

partial availability
indexes 10-27
tables 10-25

PARTIAL_AVAILABILITY
parameter

modifying 9-46, 9-48
rbw.config file entry B-20
syntax and usage 10-25

PARTITIONED_PARALLEL_
AGGREGATION parameter

described 11-5
modifying 9-46
rbw.config file entry B-17

PASSWORD parameters
CHANGE_MINIMUM_DAYS

7-32
COMPLEX_NUM_ALPHA 7-34
COMPLEX_NUM_NUMERICS

7-34
COMPLEX_NUM_

PUNCTUATION 7-35
described 7-28
EXPIRATION_DAYS 7-28
EXPIRATION_WARNING_

DAYS 7-30
LOCK_FAILED_ATTEMPTS

7-36
LOCK_PERIOD_HOURS 7-36
MINIMUM_LENGTH 7-33
modifying 9-47, 9-48
RESTRICT_PREVIOUS 7-31

password parameters. See
PASSWORD parameters.

passwords
changes, enforcing 7-28
changing 7-7
changing system default A-8
complexity and length 7-34
expiration 7-28
expiration warning 7-30
frequency of changes 7-32
limiting reuse 7-31
locked accounts 7-36
new users 7-6
restrictions, standard 7-7
security 7-27
security parameters 7-28
standard restrictions 5-9
system account, changing 5-8
Index 9

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
pathnames, relative and full 9-40
performance

general tuning 10-5 to 10-80
parallel query

tuning 11-3 to 11-46
parallel table scan 11-44
resource and workload

analysis 11-36 to 11-40
schema design 3-8
STARjoin queries 11-41
SuperScan technology 11-44
TARGET indexes 5-18

periodic commit 6-5
permission. See object privileges

and databases, access to.
physical I/O statistics 8-9
physical storage units. See PSUs.
platform icons Intro-11
precomputed views 2-13
PRECOMPUTED_VIEW_QUERY_

REWRITE parameter
modifying 9-46, 9-48
rbw.config file entries B-13

predicate, defined 10-47
primary key, defined 3-8
printed manuals Intro-17
private macros 5-21
process checker daemon 1-13
processes

allocating, for parallel
queries 11-29 to 11-31

defined 1-10
monitoring 9-49

PROCESS_CHECKING
INTERVAL parameter

rbw.config file entry B-12
PROCESS_CHECKING_

INTERVAL parameter
modifying 9-45, 9-47

pseudocolumns 9-16
PSUs

allocating disk space 5-11
changing location 9-26
changing size 9-25
for indexes 5-11
MAXSIZE value 9-15
sequence ID C-17

PUBLIC access 7-10

public macro 5-21
PUBLIC_MACROS task

authorization 7-13

Q
queries

logging 8-26, 8-32
parallel processes

for 11-6 to 11-31
query performance

additional indexes 10-42
SQL improvements 10-78
See also performance and parallel

query processing
query processing 10-43 to 10-58
QUERYPROCS parameter

definition 11-4
described 11-5 to 11-30
modifying 9-45
rbw.config file entry B-16
syntax and usage 11-10

QUERY_MEMORY_LIMIT
parameter

estimating value of 4-43
modifying 9-48
setting 10-18
syntax 10-12
value 10-15

QUERY_TEMPSPACE
parameters 10-7 to 10-19

current values 10-17
described 4-43 to 4-44
DIRECTORY(IES)

rbw.config file entries B-18
use of 10-9

MAXSPILLSIZE
rbw.config file entries B-18
value 4-44

modifying 9-46, 9-48
QUERY_MEMORY_LIMIT,

rbw.config file entries B-18
QUERY_TEMPSPACE_

DIRECTORY parameter 10-12
QUERY_TEMPSPACE_

MAXSPILLSIZE
parameter 10-12

quiesce, database 8-12

R
RAID devices, with version

log 6-16
.rbretrc file 2-22
rbwadmd daemon

details 8-15
output 2-36
starting 9-50
statistic collection interval 8-16
stopping 9-50

rbwadmd thread
starting 9-50
stopping 9-52

RBWAPI entries in rbw.config B-11
rbwapid daemon

described 1-12
rbw.config file entries B-11

rbwconc thread 1-14
.rbwerr file 2-22
rbwlogd daemon

defined 1-13
output 2-36
role in accounting 8-40
starting 8-18
stopping 8-31

rbwlogview executable 8-20
rbwlsnr thread 1-14
rbwpchk daemon 1-13
.rbwrc file 2-21
rbwsvr process 1-12
rbwvcd daemon 1-13
rbw.config file. See configuration

file.
rbw.findserver utility 9-51
rbw.servermon daemon

and Findserver 9-51
interval setting B-12
stopping 9-51

rbw.show script, usage 9-50
rbw.start script

rbwadmd daemon 9-50
usage 9-50

rbw.stop script, usage 9-50
RBW_COLUMNS table C-4
RBW_CONSTRAINTS table 5-13,

C-6
RBW_CONSTRAINT_

COLUMNS table C-5
10 Informix Red Brick Decision Server Administrator’s Guide

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
RBW_HIERARCHIES table C-6
RBW_INDEXCOLUMNS table C-7
RBW_INDEXES table C-8
RBW_LOADINFO table C-9
RBW_LOADINFO_LIMIT

parameter, rbw.config file
entries B-19

RBW_MACROS table C-11
RBW_OPTIONS table 2-30, C-12
RBW_PRECOMPVIEW_

CANDIDATES table C-2
RBW_PRECOMPVIEW_

COLUMNS table C-13
RBW_PRECOMPVIEW_

UTILIZATION table C-2
RBW_RELATIONSHIPS

table 5-13, C-13
RBW_ROLES table 7-24, C-15
RBW_ROLE_MEMBERS

table 7-24, C-14
RBW_ROWNUM

pseudocolumn 9-16, 9-23
RBW_SEGID pseudocolumn 9-16
RBW_SEGMENTS table 2-20, C-15
RBW_SEGNAME

pseudocolumn 9-16
RBW_STORAGE table C-17
RBW_SYNONYMS table C-18
RBW_TABAUTH table 7-24, C-19
RBW_TABLES table C-20
RBW_USERAUTH table 7-24, C-21
RBW_VIEWS table C-26
RBW_VIEWTEXT table C-27
rb_cm 8-5
RB_CONFIG environment

variable 2-24
user accounts 7-4

rb_creator utility A-7
RB_DEFAULT_LOADINFO

file 5-7
rb_deleter utility, deleting

databases 9-58
RB_DSN environment

variable 2-24
RB_EXE environment variable 2-24
RB_HOME environment

variable 2-24

RB_HOST environment
variable 2-24

user accounts 7-4
RB_NLS_LOCALE environment

variable 2-32
RB_PATH environment variable

described 2-24
user accounts 7-4

rb_sample.cleanup script,
usage 10-17

read locks 9-7
read statistics 8-9
recovering a damaged

segment 9-27
recovery procedures 1-20
Red Brick Decision Server

component overview 1-5 to 1-7
described 1-3
license, rbw.config file entry B-15

Red Brick Decision Server for
Workgroups

license, rbw.config file entry B-15
limits 1-22

redbrick
administrative user 1-16
directory permissions 5-5
user account 2-36, A-4
user umask setting 5-5

referenced tables
defined 3-8
outboard, outrigger 3-13

referencing tables 3-8
referential integrity

defined 2-39
delete behavior,

defining 5-14 to 5-15
delete operations 2-40
load and insert operations 2-39
ON DELETE clause 5-14

relation scans 11-4, 11-28
RENAME clause, ALTER

SEGMENT statement 9-22
RENICE_COMMAND parameter

rbw.config file entry B-22
user priorities 8-15

REORG operations
after ALTER SEGMENT 4-49
effect of MAXROWS PER

SEGMENT parameter 5-12
effect of MAXSEGMENTS

parameter 5-12
REORG_ANY task

authorization 7-13
REPORT_INTERVAL parameter

modifying 9-48
rbw.config file entry B-21
usage 8-17

resetting statistics 8-13
resource privileges, with ODBC 7-5
RESOURCE system role

described 2-37, 7-7
granting 7-9, 7-18
revoking 7-9, 7-22

restore operations
during index creation 5-15
on versioned databases 6-20

RESTORE_DATABASE task
authorization 7-13

restricted delete operations 5-14
RESULT BUFFER FULL ACTION

parameter
described 10-21
modifying 9-46, 9-48
rbw.config file entry B-17

RESULT BUFFER parameter
described 10-19
modifying 9-46, 9-48
rbw.config file entry B-17

reuse by row 9-16
reusing

segments D-15
REVOKE authorization and role

command
examples 7-22
usage 7-22

RISQL calculate operator 10-52
RISQL Entry Tool

invoking A-8
user accounts 7-4

RISQL Entry Tool and RISQL
Reporter

described 1-8
locales for 2-32
user accounts 7-4
Index 11

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
role-based security 7-11
roles

direct and indirect
membership 7-11

dropping 9-56
granting 7-9, 7-18 to 7-21
membership 7-18 to 7-21
revoking 7-9, 7-22
system 7-7
system table information 7-24
user-created 7-11 to 7-26

ROLE_MANAGEMENT task
authorization 7-13

rollback operation 9-6
row numbers

description 9-17
how database server uses 10-28
per block 10-30
RBW_ROWNUM

pseudocolumn 9-23
RBW_SEGNAME

pseudocolumn 9-17
rows per block 10-28, 10-34
specifying range 9-23, 9-24
unused 10-29, 10-30, 10-33
VARCHAR fill factor effect 10-29

ROWCOUNT parameter,
rbw.config file entries B-19

rows per block
calculation 10-28
CHECK TABLE output 10-34,

10-35
MAXROWS PER

SEGMENT 10-33
number of row numbers 10-28
typical row size 10-28, 10-31
VARCHAR fill factor effect 10-30,

10-31, 10-32, 10-33
rows, deleting

locking tables 9-9
referential integrity 2-40

ROWS_PER_FETCH_TASK
parameter

described 11-4, 11-13
modifying 9-46
rbw.config file entry B-16
syntax and usage 11-17

ROWS_PER_JOIN_TASK
parameter

described 11-4, 11-13
modifying 9-46
rbw.config file entry B-16
syntax and usage 11-17

ROWS_PER_SCAN_TASK
parameter

described 11-4, 11-13
modifying 9-46
rbw.config file entry B-16
syntax and usage 11-14

S
schema events 8-26
schemas. See star schemas.
scratch space, estimating

requirements 4-36
secondary dimension tables 3-13
security

passwords 7-27
role-based 7-11

segmented storage
default locations 10-22
described 2-7
implementation of 2-8
planning for use 4-45 to 4-49
See also segments.

segments
adding a new segment D-17
adding space to 9-18
altering 9-21 to 9-27
attaching 9-23
automatic locking 9-8
backup 9-22
creation guidelines 5-11
damaged, recovering 9-27 to 9-29
default

changing to named 4-46
defined 2-8

defined 2-7
detaching 9-23
distributing data among 2-10
dropping 9-56
intact 9-27
moving entire 9-24

named 2-7
named versus default 4-46
offline load, example D-20
online, offline 2-12, 9-24
optical, defined 9-30
partial availability 2-13
range, changing 9-24
reusing D-15, D-24
rolling off D-15
space available 9-13 to 9-15
time-cyclic data,

example D-1 to D-24
verifying 9-26

SEGMENTS parameter
modifying 9-46, 9-48
rbw.config file entry B-20
usage 10-23

selectivity, defined 4-10
server

described 1-7
installation 2-20
limits 1-21
maximum number of B-11
monitoring on Windows NT 9-52
monitoring processes on

UNIX 9-49
on Windows NT 1-7
software components 1-5

server monitor daemon. See
rbw.servermon daemon.

SERVER parameter
changing 9-47
modifying 9-45
rbw.config file entry B-11

server process 1-12
SERVER_NAME parameter

modifying 9-45, 9-47
rbw.config file entry B-12

service, warehouse
overview 1-10

session
changing user priority 8-14
closing 8-14

SET commands, SQL
ADVISOR LOGGING 8-36
DEFAULT SEGMENT STORAGE

PATH 10-22
FORCE_FETCH_TASKS 11-29
12 Informix Red Brick Decision Server Administrator’s Guide

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
FORCE_HASHJOIN_TASKS
11-32

FORCE_JOIN_TASKS 11-29
FORCE_SCAN_TASKS 11-28
IGNORE_OPTICAL_INDEXES

9-32
INDEX_TEMPSPACE 10-13
OPTICAL_AVAILABILITY 9-31
overview 2-23
PARTIAL AVAILABILITY 10-25
QUERY_MEMORY_LIMIT 10-13
QUERY_TEMPSPACE 10-13
REPORT_INTERVAL 8-17
RESULT BUFFER 10-19
RESULT BUFFER FULL

ACTION 10-21
SEGMENT 10-24
STATS 10-6, 10-55
TRANSACTION ISOLATION

LEVEL 9-11
UNIFORM PROBABILITY FOR

ADVISOR 8-39
SET TRANSACTION ISOLATION

LEVEL 9-11
shared memory 1-14
SHMEM parameter

modifying 9-45
rbw.config file entry B-11

simple merge operator 10-52
size estimates

B-TREE indexes 4-26
example, database sizing 4-27
STAR indexes 4-26
system tables 4-33
tables and indexes 4-20
TARGET indexes 4-27

SKU number 3-16
software dependencies Intro-4
sort 1-1 match operator 10-53
sort component

defined 2-28
effect of changing 2-31

sort phase of optimized index
build 4-37

SQL statement, canceling 8-13
SQL-BackTrack

described 1-9
license, rbw.config file entry B-15

STAR indexes. See indexes, STAR.

star schemas 3-32
described 3-6
design considerations 3-18
examples 3-20, 3-32
performance 3-8
supported types 3-32
use of attributes 3-25

STARjoin
defined 2-6
parallel query performance 11-41

STARjoin operator 10-53
starting, server 9-50
statistics

collection interval 8-16
platform effect on availability

of 8-11
read and write 8-9
resetting 8-13

statistics reporting 10-6
stopping, server 9-50
storage devices, optical 9-29
subquery in the FROM clause 10-78
subquery operator 10-53
SuperScan technology 2-5, 11-6,

11-44
support, technical Intro-12
synonyms, dropping 9-57
syntax diagrams

conventions for Intro-7
keywords in Intro-9
variables in Intro-9

syntax notation Intro-5
system accounts, for new users 7-4
system catalog, contents C-2
system requirements

database Intro-4
software Intro-4

system roles
described 7-7
granting 7-9, 7-18
overview 2-37
revoking 7-9, 7-22

system tables
described C-1 to C-27
references to locale 2-30
size estimates 4-33

system, database user account 5-8

T
Table Management Utility

(TMU) 1-7
table scan operator 10-54
tables

access, limiting with views 5-19
adding rows, effect on STAR

index 4-48
altering 9-33
browsing 3-24
creating Aroma tables A-9
creation guidelines

foreign key order 5-12
order 5-12
referential integrity on

delete 5-12
setting MAXROWS PER

SEGMENT 5-12
setting MAXSEGMENTS 5-12

dropping 9-57
families, immediate and

complete 2-40
growth patterns 4-48
growth, monitoring 9-13
in segments 5-11
locking 9-6
multiple fact tables 3-10
optical storage 9-31
partial availability 10-25
segmenting column 9-24
size estimates 4-21
sizing 4-22
system tables, size estimates 4-33
when to lock 9-9

TARGET indexes. See indexes,
TARGET.

TARGET scan operator 10-54
TARGETjoin

defined 2-6
planning for 4-13
query processing 10-59 to 10-74
rules 10-60
when to use 10-62

TARGETjoin operator 10-54
task authorizations

ACCESS_SYSINFO 8-6
ALTER_SYSTEM 8-6
defined 7-12
Index 13

@O Q C A B D E F G H I J K L M N P R S T U V W X Y Z
for managing database
activity 8-6

granting 7-16
tasks for parallel queries,

allocating 11-25 to 11-31
technical support Intro-12
temporary macros

deleting 9-56
scope 5-21

temporary space 4-35, 4-44,
10-7 to 10-19

temporary tables 4-22
TEMPORARY_DATA_SEGMENT

parameter
modifying 9-46, 9-48
rbw.config file entries B-19

TEMPORARY_INDEX_SEGMENT
parameter

modifying 9-46, 9-48
rbw.config file entries B-19

TEMP_RESOURCE task
authorization 7-14

territory
defined 2-27
effect of changing 2-31, 2-35

thread, defined 1-10
time-cyclic data,

example D-1 to D-24
tip icons Intro-10
TMU, Aroma

examples A-24 to A-27
TMU_BUFFERS parameter

modifying 9-47, 9-48
rbw.config file entry B-16

TMU_COMMIT_RECORD_
INTERVAL parameter

modifying 9-47, 9-48
TMU_COMMIT_TIME_

INTERVAL parameter
modifying 9-47, 9-48

TMU_CONVERSION_TASKS
parameter, modifying 9-47

TMU_INDEX_TASKS parameter
modifying 9-47

TMU_OPTIMIZE parameter
modifying 9-48
rbw.config file entries B-18

TMU_OPTIMIZE parameter,
modifying 9-47

TMU_SERIAL_MODE parameter,
modifying 9-47

TMU_VERSIONING parameter,
modifying 9-47, 9-48

TOTALFREE column,
RBW_SEGMENTS table 9-16

TOTALQUERYPROCS parameter
definition 11-4
described 11-5 to 11-30
modifying 9-45
rbw.config file entry B-16
syntax and usage 11-10

trailing blanks 1-19
transaction-processing

databases 3-4
transactions

defined 2-38
single statement 2-38

TRANSACTION_ISOLATION_
LEVEL parameter

modifying 9-46, 9-48
translated text 2-31
trickle feed applications 6-5
troubleshooting, general Intro-13
TUNE parameters

FORCE_AGGREGATION_
TASKS 11-33

FORCE_FETCH_TASKS 11-26
FORCE_JOIN_TASKS 11-26
FORCE_SCAN_TASKS 11-26
INDEX_TEMPSPACE_

DIRECTORY 10-12
INDEX_TEMPSPACE_

MAXSPILLSIZE 10-12
INDEX_TEMPSPACE_

THRESHOLD 10-12
OPTICAL_AVAILABILITY 9-31
PARTITIONED_PARALLEL_

AGGREGATION 11-33
QUERY_MEMORY_LIMIT 10-12
QUERY_TEMPSPACE_

DIRECTORY 10-12
QUERY_TEMPSPACE_

MAXSPILLSIZE 10-12
tuning

database 1-20
parallel query parameters 11-4

U
UNIFIED_LOGON parameter

changing 9-47
rbw.config file entry B-12

UNIFORM_PROBABILITY_FOR_
ADVISOR parameter

modifying 9-48
rbw.config file entry B-13

UNION versus OR operation 10-78
unloading data

frozen versions 6-19
overview 1-18

UPC level 3-23
update operator 10-55
UPGRADE_DATABASE task

authorization 7-13
usage events 8-26
USAGE ROUTINE event 8-26, 8-32
USED column, RBW_STORAGE

table 9-16
user access, providing 1-17
user accounts

adding new users 7-4 to 7-7
expired 7-29
locked 7-36
RISQL Entry Tool 7-4

user priority, changing 8-14
user-created roles

creating 7-15
direct and indirect

membership 7-11
dropping 9-56
granting 7-18 to 7-21
managing 7-11 to 7-26
revoking 7-22

users
adding to a database 7-6
changing passwords 7-7
types of Intro-3

user, redbrick 1-16, 2-14, 2-36
USER, SQL variable 5-19
USER_MANAGEMENT task

authorization 7-13
USE_INVALID_PRECOMPUTED_

VIEWS parameter
modifying 9-46, 9-48
rbw.config file entries B-14
14 Informix Red Brick Decision Server Administrator’s Guide

O Q C A B D E F G H I J K L M N P R S T U V W X Y Z @
utility programs
copy management 8-5
dbsize 4-22
findserver 9-51
rb_cm 8-5
See also dbsize, dbcreate,

rb_creator, and rb_deleter.

V
vacuum cleaner daemon 1-13, 6-21
VARCHAR columns

changing from CHAR 9-36
fill factor effects 10-28
loading data with 1-19
modifying fill factor 10-36
monitoring fill factor 10-34

variables in syntax
diagrams Intro-9

version log
adding space to 6-17
allocating space 6-16
costs 6-6
creating 6-16
dropping 6-17
enabling 6-14
monitoring 6-19
tuning for performance 6-16

version log sizing 6-16
version of server software 9-54
versioned databases

Aroma example 6-23
described 2-38
frozen, backups 6-21

versioned transactions,
defined 2-38

VERSIONING parameter,
modifying 9-46, 9-48

views
creation guidelines 5-18
described 3-17
dropping 9-57
precomputed 2-13

virtual table scan operator 10-55

Vista
Advisor logging commands 8-32
described 2-13
description of option 1-9
rbw.config license entry B-15

Visual Basic, database access
with 7-5

W
WAIT/NO WAIT on locks 9-10
warehouse processes

CTRL-C coordination thread 1-14
daemon process 1-12
listener thread 1-14
log daemon process 1-13
overview 1-9 to 1-14
process checker daemon 1-13
server process 1-12
vacuum cleaner daemon 1-13

warehouse service on NT
defined 1-12
monitoring 9-52

warehouse. See server.
warning icons Intro-10
weak selectivity

defined 4-10
improving performance for

queries with 5-18
WEB_CONNECTIONS

option B-15
workload accounting 8-40
write locks 9-7
write statistics 8-11

Symbols
.odbc.ini file 2-23
.rbretrc file 1-17
.rbwerr file 2-22
.rbwrc file 1-17, 2-21
Index 15

	Answers OnLine Web Site
	Table of Contents
	Introduction
	About This Guide
	Types of Users
	Software Dependencies

	New Features
	Documentation Conventions
	Syntax Notation
	Syntax Diagrams
	Keywords and Punctuation
	Identifiers and Names
	Icon Conventions
	Comment Icons
	Platform Icons

	Customer Support
	New Cases
	Existing Cases
	Troubleshooting Tips

	Related Documentation
	Additional Documentation
	Online Manuals
	Printed Manuals

	Informix Welcomes Your Comments

	Overview of Red Brick Decision Server
	Database Server Technology
	Database Server Components
	Red Brick Decision Server
	Table Management Utility
	RISQL Entry Tool and RISQL Reporter
	Administrator Tool
	Client Connector Pack
	Informix Vista
	SQL-BackTrack

	Database Server
	Interprocess Communication
	Warehouse API Process
	Server Processes
	Administration Daemon Process
	Log Daemon Process
	Process Checker Daemon
	Vacuum Cleaner Daemon
	Listener Thread
	CTRL-C Coordination Thread
	Shared Memory

	Database Administration Overview
	Installing Red Brick Decision Server
	Planning the Database Design
	Implementing the Database
	Providing User Access
	Initialization Files
	Macros

	Loading and Unloading Data
	Loading Concurrently with Queries
	Exporting Query Results
	Loading Columns with VARCHAR Columns

	Maintaining the Database and Tuning for Performance
	Planning Backup and Restore Procedures

	Aroma Sample Database
	Database Limits

	Key Concepts
	Data Loading
	Parallel Processing
	Physical Implementation of Databases
	Indexes and Retrieval Strategies
	Segmented Storage
	Named and Default Segments
	Implementation
	PSU Size and Growth
	Distributing Data Among Segments
	Online and Offline Segments
	Partial Availability of Tables and Indexes

	Precomputed Views for Increased Query Performance

	Database Directories and Files
	Logical Database Names
	Segment Names

	Configuration and Initialization
	Configuration File
	Initialization Files
	.rbwrc Files
	.rbretrc Files
	.odbc.ini Files

	SET Commands
	Environment Variables
	Administrator Tool

	Server Locale
	Components of a Locale
	Language
	Territory
	Character Set
	Collation Sequence

	Defining the Server Locale
	System Table References to Locales
	Nontranslated Text

	Overriding the Server Locale
	Specifying a Locale for a Client Tool
	Setting the RB_NLS_LOCALE Environment Variable

	Ensuring Client/Server Compatibility
	Character Set Conversions
	Message System

	File Ownership and Permissions
	Database Authorizations and Privileges
	Versioned Databases
	Referential Integrity
	Load and Insert Operations
	Delete Operations and Cascaded Deletes

	Schema Design
	Transaction Processing Versus Decision Support
	Transaction-Processing Databases
	Decision-Support Databases

	Star Schemas
	Performance of Star Schemas
	Terminology
	Simple Star Schemas
	Multiple Fact Tables
	Multi-Column Foreign Key
	Outboard Tables

	Multi-Star Schemas
	Views

	Considerations for Schema Design
	Schema Building Blocks
	Example: Salad Dressing Database

	Analyzing Your Schema
	Browsing the Dimension Tables
	Querying the Fact Table
	Determining Which Attributes to Include

	Schema Examples
	Reservation System Database
	Investment Database
	Health Insurance Database

	Planning a Database Implementation
	Organizing Data into Databases
	Determining When to Create Additional Indexes
	STAR Indexes
	B-TREE Indexes
	TARGET Indexes
	Weakly Selective Constraints
	Choosing the Right Domain Size
	Knowing Your Data

	No Indexes

	Planning for TARGETjoin Processing
	STARjoin Versus TARGETjoin
	Administration Considerations for TARGETjoin Processing
	Cost Versus Performance
	Load Operations
	Large Dimension Tables
	Multi-Column Foreign Keys
	Parallel TARGETjoin Queries

	TARGET Index DOMAIN Clause

	Planning Disk Storage Organization
	Estimating the Size of User Tables
	Estimating the Size of Indexes
	Index Fill Factors
	STAR Indexes
	B-TREE Indexes
	TARGET Indexes

	Example: Calculating Table, Index, and System Table Sizes
	Fact1 Table and Its Indexes
	Market Table and Its Indexes
	Product Table and Its Indexes

	Estimating the Size of System Tables
	Size: System Tables

	Total Space for User Tables, Indexes, and System Tables

	Estimating Temporary Space Requirements
	How Optimized Index-Building Operations Use�Temporary�Space
	Estimating Temporary Space Values for Index- Building�Operations
	DIRECTORY Location Values
	THRESHOLD Value
	MAXSPILLSIZE Value
	Online Index-Building Operations
	Offline Index-Building Operations

	Temporary Space Requirements for TARGET Indexes
	How Query Operations Use Temporary Space
	Estimating a QUERY_MEMORY_LIMIT Value for Queries
	Estimating a MAXSPILLSIZE Value for Queries

	Planning for Segmented Storage
	Determining When to Use Default and Named Segments

	Considerations for Growing Tables
	Effect of Table Growth on STAR Indexes

	Creating a Database
	Overview
	Creating the Database Structure
	Initializing the Database
	Defining a Logical Database Name
	Changing the DBA Account Password

	Creating the Database Objects
	Creating Segments
	Creating Tables
	Setting the MAXSEGMENTS and MAXROWS�PER�SEGMENT Parameters
	Naming Constraints for Primary and Foreign Keys
	Maintaining Referential Integrity with ON DELETE

	Creating Indexes
	INDEX TEMPSPACE Parameters
	Parallel Indexes
	Loading Tables with Indexes
	STAR Indexes
	TARGET Indexes

	Creating Views
	Creating and Managing Macros
	Guidelines for Macro Definitions
	Availability and Scope

	Working with a Versioned Database
	Determining Whether You Need Versioning
	Load Window
	Increased Recoverability
	Load with Periodic Commit
	Dimension Table Cleaning
	Costs of the Version Log

	Loading Data into Versioned Databases
	Understanding the Version Log
	Structure of the Version Log
	Versioned DELETE Operations

	Understanding Frozen Versions
	Controlling Versioning
	Creating the Version Log
	Dropping the Version Log and Adding Space
	Controlling Frozen Versions
	Freezing the Database
	Overriding Frozen Versions
	Unfreezing the Database
	Unloading Data with Frozen Versions

	Maintaining a Versioned Database
	Monitoring the Version Log
	Backup and Recovery

	Controlling the Vacuum Cleaner
	Example: Creating a Versioned Aroma Database

	Providing Database Access and Security
	Adding Database Users
	Creating Operating-System Accounts for Users
	Granting Database Access
	Changing Passwords

	Granting Access with System Roles
	DBA, RESOURCE, and CONNECT Capabilities
	Granting and Revoking the DBA and RESOURCE System Roles

	Granting Database Object Privileges
	Granting Access with Role-Based Security
	Task Authorizations
	Role Capabilities
	Creating Roles
	Granting Task Authorizations
	Granting Object Privileges to Roles
	Granting Roles
	Revoking Task Authorizations, Object Privileges, and Roles
	Tracking Role Authorizations and Members

	Administering Password Security
	Enforcing Password Changes
	Warning Users of Password Expiration
	Limiting Reuse of Previous Passwords
	Limiting Frequency of Password Changes
	Enforcing Password Complexity and Length
	Locking User Accounts After Failed Connection Attempts
	Specifying the Lock-Out Period
	Locked Account Status

	Managing Database Activity in an Enterprise
	Task Authorizations for Managing Database Activity
	Administration Database
	Monitoring Database Activity with Dynamic Statistic Tables
	Read and Write Statistics
	Definition of Read Statistics
	Definition of Write Statistics
	Platform Dependency

	Controlling Database Activity
	Bringing a Database to a Quiescent State
	Activating a Database
	Resetting Accumulated Statistics
	Canceling a User Command
	Closing a User Session
	Changing User Priorities for the Current Session

	Administration Daemon Process
	Statistics Collection Interval
	DST Refresh Interval

	Event Logging
	Logging Subsystem
	Log Daemon
	Log Viewer

	Event Log Messages
	Event Severity
	Event Category
	Audit Events
	Error Events
	Operational Events
	Schema Events
	Usage Events

	Log Files
	Configuring the Logging Subsystem
	Setting the Startup State
	Specifying the Location of Log Files
	Specifying the Maximum Log File Size
	Setting the Log Severity Filter Level
	Controlling Logging Operations
	Starting Logging
	Stopping Logging
	Switching Log Files
	Changing Log Filter Levels
	Terminating the Log Daemon

	Query Logging

	Controlling Advisor Logging
	Advisor Log Files
	What the Advisor Logs
	Starting and Stopping the Advisor Log
	ADMIN ADVISOR_LOGGING
	ALTER SYSTEM
	SET ADVISOR LOGGING

	ADMIN ADVISOR_LOG_DIRECTORY
	ADMIN ADVISOR_LOG_MAXSIZE
	SET UNIFORM PROBABILITY FOR ADVISOR

	Accounting
	Accounting Process
	Format of Accounting Records
	Accounting Files
	Configuring Accounting
	Setting the Startup State
	Specifying the Location of Accounting Files
	Specifying the Maximum Accounting File Size
	Setting the Accounting Mode

	Controlling Accounting
	Starting Accounting
	Stopping Accounting
	Switching Accounting Files
	Changing Accounting Mode

	Maintaining a Data Warehouse
	Locking Tables and Databases
	Manual Table or Database Locks
	Types of Table Locks
	Locking and Segments
	Determining When to Lock a Table or Database
	Specifying Wait Behavior for Server and TMU Locks
	No-Wait Behavior
	Livelocks
	Deadlocks

	Setting Isolation Level for Versioned Transactions

	Obtaining Information on Tables and Indexes
	Monitoring Growth of Tables and Indexes
	STAR Indexes
	MAXSIZE Column
	USED Column
	TOTALFREE Column
	Pseudocolumns

	Adding Space to a Segment
	Altering Segments
	ALTER SEGMENT Operations
	Ensuring No Users Are Active
	Attaching and Detaching Segments
	Moving Entire Segments
	Specifying a Segmenting Column
	Specifying a Range
	Taking a Segment Offline or Online
	Clearing a Segment
	Renaming a Segment
	Changing PSU Sizes
	Changing PSU Location
	Verifying a Segment
	Forcing a Segment into an Intact State

	Recovering a Damaged Segment
	Managing Optical Storage
	Assigning Optical Storage
	Specifying Access Behavior for Optical Segments
	Specifying Index Selection with Optical Segments

	Altering Tables
	Adding and Dropping Columns
	Changing a Column Name
	Changing the Default Value for a Column
	Changing the MAXSEGMENTS and MAXROWS PER SEGMENTS Values
	Changing the Way Referential Integrity Is Maintained
	Changing the Data Type for a Column
	Adding and Dropping Foreign Keys
	Changing the Fill Factor for a VARCHAR Column
	Recovering from an Interrupted ALTER TABLE Operation
	Recovering the Table
	Interruptions: Causes and Prevention

	Copying or Moving a Database
	Full Versus Relative Pathnames
	Copying a Database That Contains Only Relative Pathnames
	Copying a Database That Contains Full Pathnames
	Moving a Database That Contains Only Relative Pathnames
	Moving a Database That Contains Full Pathnames

	Modifying the Configuration File
	Monitoring and Controlling a Database Server
	Monitoring and Controlling a Server on UNIX
	Daemon Processes
	Findserver Utility
	Log Files

	Monitoring and Controlling a Server on Windows NT

	Enabling Licensed Options
	Determining Version Information
	Deleting Database Objects and Databases
	Dropping Database Objects
	Indexes
	Macros
	Roles
	Segments
	Synonyms
	Tables
	Views

	Deleting a Database

	Tuning a Warehouse for Performance
	Specifying Parameters with rbw.config�File�Entries�or�SET�Commands
	Setting Temporary Space Parameters
	Temporary Space Parameters
	How Temporary Space Is Allocated
	Random Directory Sequence
	File Creation and Use
	Full and Out-of-Space Conditions

	TEMPSPACE
	Determining Current Values
	Removing Temporary Files
	Setting QUERY_MEMORY_LIMIT

	Setting the Result Buffer for Long-Running Queries
	RESULT BUFFER Parameter
	RESULT BUFFER FULL ACTION Parameter

	Setting Segment and Partial Availability Behavior
	Location of Default Segments
	Segment Drop Behavior
	Query Behavior on Partially Available Tables
	Use of Partially Available Indexes

	Setting the VARCHAR Column Fill Factor
	How the Server Uses the VARCHAR Fill Factor
	Effect of Fill Factor on Performance
	Monitoring Accuracy of the VARCHAR Fill Factor
	Using CHECK TABLE with the VERBOSE Option
	Obtaining Current Fill Factor Value

	Modifying the VARCHAR Fill Factor

	Setting the Index Fill Factor
	Finding the Fill Factor Used for a Specific Index
	Deciding Whether to Change Default Fill Factors
	Changing an Index Fill Factor

	Creating Additional Indexes
	Understanding Query Processing
	Join Algorithms
	Operator Model
	Advisor
	B-TREE 1-1 Match
	B-TREE Scan
	Bit Vector Sort
	Check
	Choose Plan
	Delete
	Delete Cascade
	Delete Refcheck
	Exchange
	Execute
	Functional Join
	General Purpose
	Hash 1-1 Match
	Hash AVL Aggregate
	Insert
	Merge Sort
	Naive 1-1 Match
	RISQL Calculate
	Simple Merge
	Sort 1-1 Match
	STARjoin
	Subquery
	Table Scan
	TARGETjoin
	TARGET Scan
	Update
	Virtual Table Scan

	EXPLAIN Statement

	TARGETjoin Query Processing
	How to Use TARGETjoin Processing
	Create TARGET or B-TREE Indexes on Foreign Keys of Fact Table
	Rules for TARGETjoin Query Processing
	Turning Off TARGETjoin Query Processing

	When to Use TARGETjoin Processing
	Evaluate Query Performance
	Schema Types
	Many STAR Indexes Versus TARGETjoin Processing

	Examples
	Query That Chooses TARGETjoin

	Reading EXPLAIN Output for a TARGETjoin Query
	STAR and TARGET Plan
	TARGET Only Plan

	Summary and Recommendations
	Indexes to Create
	Large Dimension Table
	Experiment

	Using Synonyms to Control Fact-to-Fact Joins
	Making SQL-Based Improvements
	UNION Versus Interdimensional ORs
	Subquery in the FROM Clause Versus Correlated Subquery

	Tuning a Warehouse for Parallel Query Processing
	Parallel Query Tuning Parameters
	Enabling Parallel Query Processing
	Limiting I/O Contention with the FILE_GROUP Parameter
	Allowing Parallelism Within Disk Groups with the GROUP Parameter
	Limiting Available Tasks
	TOTALQUERYPROCS
	QUERYPROCS

	Setting Minimum Row Requirements with ROWS_PER_TASK Parameters
	ROWS_PER_SCAN_TASK
	ROWS_PER_FETCH_TASK and ROWS_PER_JOIN_TASK
	Estimated Rows
	Number of Tasks
	Enabling Parallelism for a STARjoin
	Number of Rows in Dimension Tables

	Forcing the Number of Parallel Tasks with the FORCE_TASKS Parameters
	FORCE_SCAN_TASKS
	FORCE_FETCH_TASKS and FORCE_JOIN_TASKS
	FORCE_HASHJOIN_TASKS

	Enabling Partitioned Parallelism for Aggregation
	System Considerations for Parallel Tasks
	Analysis of System Resources and Workload
	Disk Usage
	For Data
	For STAR Indexes

	Memory Usage
	CPU Allocation

	Tuning for Specific Query Types
	Parallel STARjoin Queries
	Density
	Number of Parallel Tasks
	Mix of Parallel Tasks and File Groups
	Considerations for Multiuser Environments

	Parallel Table Scans
	SuperScan Technology
	About Reasonable Values

	Basic Guidelines

	Example: Building a Database
	Configuration File
	System Tables and Dynamic Statistic Tables
	Example: Using Segments with Time-Cyclic Data
	Index

